

ELECTRICAL SAFETY TESTERS

https://global.kikusui.co.jp/

Hipot Testers
Insulation Resistance Testers
Partial Discharge Testers
Ground Bond Testers
Leakage Current Testers

TOS SERIES SELECTION GUIDE

FIFCTRICAL SAFFTY TESTER

High-End Multi-type Hipot, insulation resistance, ground bond, leakage or partial

AC/DC Hipot Tester with Insulation Resistance, **Ground Bond, and Leakage Current Test**

ACW 5 kV/100 mA(500 VA)

DCW 5 kV/20 mA,7.2 kV/13.9 mA(100 W)

IR 0.001 MΩ to 100.0 GΩ (DC-25 V to -1000 V/DC+50 V to +7200 V) 0.001 Ω to 0.600 Ω (3.0 A to 42.0 A)

LC 1 µA to 100 mA(rms)

D 430(16.93")(440(17.32"))W×132(5.2")(155(6.10"))H ×500(19.69")(550(21.65"))Dmm

W 22 kg(48.5 lbs)

TOS9303 @ P.4 to 25

AC/DC Hipot Tester with Insulation Resistance and Ground Bond Test

ACW 5 kV/100 mA(500 VA)

DCW 5 kV/20 mA,7.2 kV/13.9 mA(100 W)

IR 0.001 MΩ to 100.0 GΩ (DC-25 V to -1000 V/DC+50 V to +7200 V) 0.001 Ω to 0.600 Ω (3.0 A to 42.0 A)

D 430(16.93")(440(17.32"))W×132(5.2")(155(6.10"))H ×500(19.69")(540(21.26"))Dmm

W 21 kg(46.3 lbs)

TOS9302 @ P.4 to 25

AC Hipot Tester with Ground Bond Test

ACW 5 kV/100 mA(500 VA) 0.001 Ω to 0.600Ω (3.0 A to 42.0 A)

D 430(16.93")(440(17.32"))W×132(5.2")(155(6.10"))H ×500(19.69")(540(21.26"))Dmm

W 20 kg(44.1 lbs)

Hipot Tester with Insulation Resistance Test

Hipot Tester

Standard type suitable for production and inspection lines

TOS5302 P.26 to 31 ACW 5 kV/100 mA(500 VA)

0.03 MΩ to 5 GΩ (DC-25 V to -1000 V)

D 320(12.60")W×132(5.2")H×350(13.78")Dmm W 14 kg(30.9 lbs)

TOS5301 P.26 to 31

ACW 5 kV/100 mA(500 VA) DCW 6 kV/10 mA(50 W)

D 320(12.60")W×132(5.2")H×350(13.78")Dmm W 15 kg(33.1 lbs)

TOS5200 P.32 to 36

ACW 5 kV/100 mA(500 VA)

D 320(12.60")W×132(5.2")H×350(13.78")Dmm W 14 kg(30.9 lbs)

ACW 5 kV/100 mA(500 VA)

D 320(12.60")W×132(5.2")H×350(13.78")Dmm W 14 kg(30.9 lbs)

ACW Max. output-voltage of AC hipot testing

DCW Max. output-voltage of DC hipot testing

Measurement range of insulation resistance testing

Measurement range of ground bond testing LC Measurement range of leakage current testing

Measurement range of partial discharge testing

D Dimensions

W Weinht

Equipped with rise time control function

Equipped with fall time control function

LAN Equipped with LAN interface as standard GPIB Equipped with GPIB interface as standard

(RS232C) Equipped with RS232C interface as standard USB Equipped with USB interface as standard

Equipped with timer function

2 Kikusui Electronics Corporation

Insulation Resistance Tester

Ground Bond Tester

High-performance type suitable for R&D, quality assurance, and automatic testing systems

The Electrical Appliance & Material Safety Low (Japan), UL (U.S.A.), CSA (Canada), VDE (Germany) and BS (U.K) are some major examples of safety standards in use throughout the world that require the performing of hipot testing. For this reason, it is necessary to confirm for what portion of what standard testing is to be performed when purchasing a hipot tester. Although the 500 VA capacity hipot testers available from KIKUSUI can basically be applied to tests specified in all safety standards, we recommend that you consult with us prior to purchase in order to select the model that best matches your specific application.

For the withstanding test and the insulation resistance test of the EUT (Equipment Under Test) with turned on electricity.

Our Hipot Testers and Insulation Resistance Testers are designed to test the EUT (Equipment Under Test) with its electricity swithed off. In case the test requires the EUT (Equipment Under Test) with the electricity turned on, please contact with our distributor or agent.

Electrical Safety Multi-analyzer

Hipot, Insulation Resistance, Ground Bond, Leakage or Partial Discharge, this analyzer covers it all!

TOS9303LC

TOS9300(ACW/IR) TOS9301(ACW/DCW/IR) TOS9301PD(ACW/DCW/IR/PD) TOS9302(ACW/EC) TOS9303(ACW/DCW/IR/EC) TOS9303LC(ACW/DCW/IR/EC/LC)

The TOS9300 series is a high performance electrical safety analyzer that complies to a wide range of universal standards. Hipot, Insulation Resistance, Ground Bond, Leakage Current (touch current and protective conductor current) and partial discharge can all be tested. A total of 6 models are available for standard compliance tests in a wide variety of applications including R&D, quality assurance manufacturing lines and laboratory tests.

- All-in-one safety tester model (TOS9303LC)
- Insulation diagnosis available with partial discharge model (TOS9301PD)
- New amplifier type allows for 40 A AC/DC ground bond testing (Ground bond tester models)
- Electrical breakdown inspection setting available
- AC5 kV/100 mA, DC7.2 kV/100 W Hipot test
- Touch current/protective conductor current/leakage current testing (TOS9303LC)
- LAN/USB/RS232C standard digital interface
- Easy to read LCD display for real time monitoring during tests, All measurement values and standard outlines displayed in each test
- High voltage scanner capable of output distribution both standalone and when connected with existing withstanding voltage/insulation resistance testing equipment models [TOS5300 series, etc.] (TOS9320)

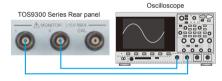
Electrical Safety Multi-analyzer

Basic performance

Color LCD Screen for Improved Visibility!

A brand-new 7-inch LCD display allows for easy access to your custom settings, standard outlines and blueprints for easy operation. (See Exterior Design P4)

User-Friendly 10Key Configuration


The TOS9300 series has included a user-friendly keypad in addition to the basic rotary knob for easy setting configuration. The front panel USB interface also allows for direct control via keyboard.* *106/109 Japanese keyboards and 101/104 English keyboard compliant.

Easy Firmware Updates via USB

System firmware can easily be updated via USB memory with update files directly accessible from our website. (https://global.kikusui.co.jp/download-service/)

I/V Monitor Terminal (Analog Monitor)

Signal outputs on the rear panel I/V terminal allow the user to monitor current/voltage waveforms during hipot tests with only an oscilloscope. Current sensors and high voltage probes not required.

Can connect with an oscilloscope using a BNC cable. *There is no BNC cable option available. Users need to acquire a BNC cable themselves.

Universal Input Support

Global Support

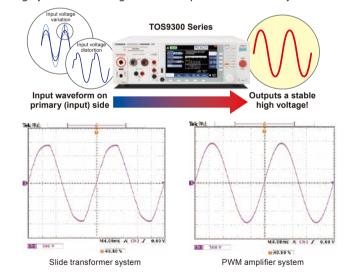
TOS9300 Series supports universal input for varying input voltages around the world.

● Programmable Output Frequency
Stable output frequency not dependent on input
power source. Testing voltage is supplied at a stable
50/60Hz frequency.

Supports testing for partial discharge (TOS9301PD)

By observing minute partial discharges, it is possible to detect deterioration inside the insulation and "potential defects" that can affect the life of the insulation, which cannot be detected by the withstand voltage test.

STATUS OUT Connector


Signals from the rear panel STATUS connector automatically activate the optional warning light (PL02A-TOS) during high voltage output or unsafe test conditions. (See Application P9 and Specification P18)

High Precision/High Resolution/High Speed

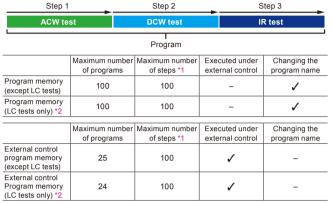
The TOS9300 is equipped with a highly accurate, high resolution RMS measurement circuit with a voltmeter of \pm (1.2% of reading +5 V)/minimum resolution 0.1 V and an ammeter of \pm (1% of reading +2 μ A)/ minimum resolution 1 μ A. The series also supports an auto range function, ensuring similar accuracy in both the upper and lower limit measurements that can accurately detect connection problems in the test lead. This combined with a measurement speed of 0.1s allows for reliable testing with high accuracy and resolution.

AC Hipot Testing with Stable Output [Input Voltage Variation: ±0.3%]

Conventional hipot testers utilize a slide transformer to output AC line voltage. This design is susceptible to input voltage fluctuation, with outside electrical influence affecting the test results. This can result in distorted voltage being applied to the EUT which can cause product malfunctions down the line due to component malfunction. The TOS9300 series utilizes a highly efficient PWM amplifier capable of stable high-voltage output that is unaffected by changes in the AC power line. The TOS9300 series allows for safe, stable, and highly reliable tests regardless of AC power line instability.

Test items

Model	AC Withstanding Voltage (AC Hipot)	DC Withstanding Voltage (DC Hipot)	Insulation Resistance	Earth Continuity (Ground Bond)	Leakage Current	Partial Discharge
T0S9300	•		•			
T0S9301	•	•	•			
T0S9301PD	•	•	•			•
T0S9302	•			•		
T0S9303	•	•	•	•		
T0S9303LC	•	•	•	•	•	


Electrical Safety Multi-analyzer

Basic performance

Automatic Testing Feature

Tests can be combined and configured to execute automatically over long periods of time. Automotic tests are composed of programs and steps, which can be configured to initiate one after another.

Program schematic

^{*1} Per program *2 TOS9303LC only

Contact/Protective Conductor/Patient Leakage Current Test (TOS9303LC)

The TOS9300 series can conduct leakage current (patient current) tests for highly sensitive medical devices. Measurement networks can be easily configured via the front panel. (See Applications P8, Specifications P19)

All Electrical Safety Standard Tests in One Device! (TOS9303LC)

The TOS9303LC is the "all-rounder" model which supports AC/DC withstanding voltage, insulation resistance, AC/DC earth continuity and leakage currents tests in a single device. It can also be used for contact current, protective conductor current and patient leakage current tests.

Programmable Detection Response Speed

Conventional withstanding voltage testers are generally used to only detect insulation breakdown, and cannot make judgements on instantaneous discharge currents like partial discharge. However, the TOS9300 series is equipped with 5 levels of response speed settings to accurately detect low levels of insulation breakdown. Small discharges not visible to conventional withstanding voltage testers are easily detected with the TOS9300 series.

Value		Description		
Slow		Mean-value response type current detector. This is similar to the current detection response of Kikusui's general-purpose AC withstanding voltage testers. This setting is suitable for detecting dielectric breakdown defined in safety standards and for general hipot tests for general electronic devices and components. This setting is not recommended for detecting corona discharge, which is not considered dielectric breakdown by typical safety standards.		
	Medium	Mean-value response type faster than SLOW setting. Upper limit judgement		
Fast		detection is much faster, suitable for withstanding voltage tests on compact electronic components and other EUTs prone to dielectric breakdown. Instantaneous discharges such as corona discharges with high frequencies are detected which may not be suitable for simple withstanding voltage tests.		
HPF	Slow	Extremely small discharges such as corona discharges are detected but with		
nrf	Fast	low reproductibility.		

Basic Memory Function

In addition to automatic testing memory functions, up to 51 basic setting conditions and testing modes can be selected and saved to the main unit or USB memory. Easy testing with no hassle!

Positive Electrode/Negative Electrode Insulation Resistance Testing

Testing voltage from -25 V to -1000 V, +50 V to +7200 V, with a setting resolution is 1 V. Insulation resistance can be tested up to 99.99 $G\Omega$. This makes for easy IEC61730-2 standard PV (solar battery) module insulation resistance testing. (See Application P9)

Electric Discharge Function

A discharge feature enables discharge of electrical energy from the DUT after DC hipot and insulation resistance tests have completed. The setting range for discharge time is between 0.0s - 100.0s.

AC/DC Earth Continuity Testing up to 40 A

Cutting edge amp technology allows for a wide range of applications, including general AC earth conduction testing and EV/ PHV system DC earth continuity testing. This also allows for strict adherence to automotive DC standard requirements; expected to increase in the near future.

EARTH FAULT Protection

Mistakenly changing the grounding (GND) setting to "guard" (floating) can result in grounding the test subject which can result in unwanted leakage current emissions from the high voltage output site into the grounding site, resulting in electric shock to the operator. The EARTH FAULT protection function blocks output and terminates the test; eliminating any risk of electric shock and maximizing safety for the operator.

Offset Cancel

The Offset Cancel feature allows the user to eliminate electrical current found in the insulation resistance and stray capacitance among the output cables (only resistance for DC testing). This feature is available in all testing modes for AC withstanding voltage, DC withstanding voltage, insulation resistance, earth continuity and electrical current leakage tests.

Rise Time/Fall Time Control Function

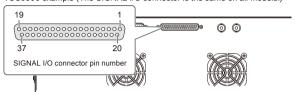
The rise time control function prevents unnecessary stress from being applied to the EUT.

The rise time control feature allows you to gradually increase voltage to a set value while AC/DC hipot tests are conducted. Voltage rise times can be set from 0.1s to 200.0s at a resolution of 0.1s.

The fall time control feature allows you to gradually decrease the test voltage after a successful AC/DC hipot test. The voltage fall time can be set from 0s to 200s at a resolution of 0.1s. (OFF is also selectable).

7.2 kV/100 W DC Hipot Test

Capable of performing DC Hipot tests up to 7.2 kV utilizing a stable DC/DC converter with low-ripple and load variation of 1% and below.


Electrical Safety Multi-analyzer

Interfaces

SIGNAL I/O Connector

The rear panel also has a SIGNAL I/O that can start/stop operation as well as output signals.

TOS9300 example (The SIGNAL I/O connector is the same on all models.)

		\ y	
Pin no.	IN/OUT	Signal name	Description
1	IN	INTERLOCK+	Activate/release interlock.
2	_	СОМ	Circuit common (chassis potential) shared by input and output.
3	IN	PM0	
4	IN	PM1	
5	IN	PM2	
6	IN	PM3	
7	IN	PM4	Select setup memories and auto test program memories.
8	IN	PM5	
9	IN	PM6	
10	IN	PM7	
11	IN	STB	Recall setup memories and programs selected with the PM0 to PM7 signals.
12	_	Reserved	
13	_	Reserved	Not used.
14	_	Reserved	
15	IN	START	Start a test.
16	IN	STOP	Stop a test.
17	IN	ENABLE	Enable the START signal.
18	_	СОМ	I/O circuit common (chassis potential).
19	IN	INTERLOCK-	Activate/release interlock.
20	_	СОМ	I/O circuit common (chassis potential).
21	_	+24V	+24 V internal power supply output terminal. Maximum output current 100 mA.
22	OUT	H.V ON/LINE ON	Set to on in any of the following conditions. Testing. Auto testing Voltage remaining across the output terminals. Power being supplied to the EUT from the TOS9303LC through AC LINE OUT.
23	OUT	RISE	Set to on when the voltage is rising.
24	OUT	TEST	Set to on during test time.
25	OUT	PASS	Set to on for the duration of time specified by Pass Hold when a PASS judgment is made.
26	OUT	U FAIL	Set to on continuously when a U-FAIL judgment is made. Or se to on continuously along with the L FAIL signal when CONTACT FAIL judgment is made when a scanner is connected.
27	OUT	L FAIL	Set to on continuously when an L-FAIL judgment is made. Or se to on continuously along with the U FAIL signal when CONTACT FAIL judgment is made when a scanner is connected.
28	_	Reserved	Not used.
29	OUT	READY	Set to on when the product is ready to start a test.
30	OUT	PROTECTION	Set to on when a protection function is activated.
31	OUT	STEP END	Set to on when each step ends during an auto test.
32	OUT	CYCLE END	Set to on when the last step ends during an auto test.
33	OUT	ACW	Set to on when the test mode is set to AC withstanding voltage test.
34	OUT	DCW	Set to on when the test mode is set to DC withstanding voltage test
35	OUT	IR	Set to on when the test mode is set to insulation resistance test
36	OUT	EC	Set to on when the test mode is set to earth continuity test.
37	OUT	LC	Set to on when the test mode is set to touch current test or protective conductor test.

LAN/USB/RS232C Standard Digital Interface

LXI compatible LAN, USB 2.0, USB-TMC compatible USB, and RS232C as standard digital interface.

*Connecting with a smartphone, tablet, etc. requires a Wi-Fi environment (wireless LAN router etc.).

▲Rear panel • Interface(All models)

Use a browser from a PC, smartphone, or tablet to access the web server built into the TOS9300 series for convenient control and monitoring

[Recommended browser]

- Requires for the Internet Explorer version 9.0 or later
- Requires for the firefox 8.0 or later
- •Requires for the safari / mobile Safari 5.1 or later Requires for the Chrome 15.0 or later
- Requires for the Opera 11.0 or later

Peripheral devices

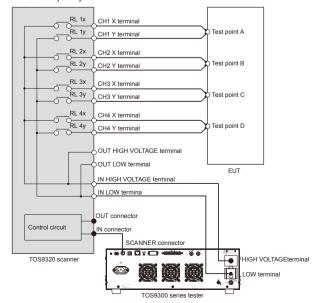
High-voltage scanner TOS9320

TOS9320 Front View

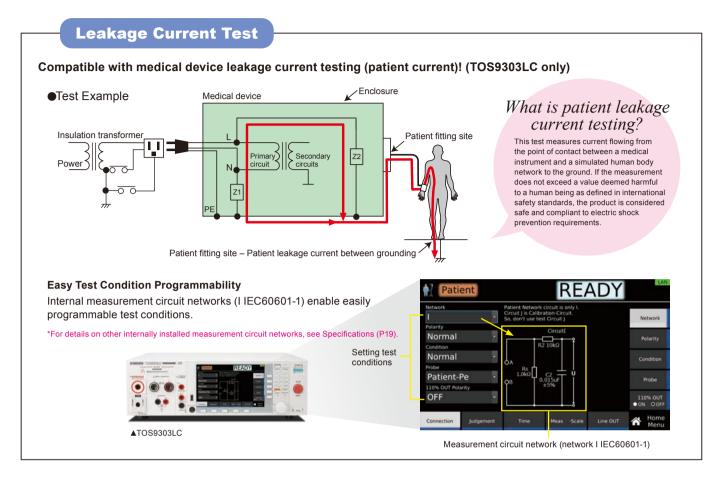
TOS9320 Rear View

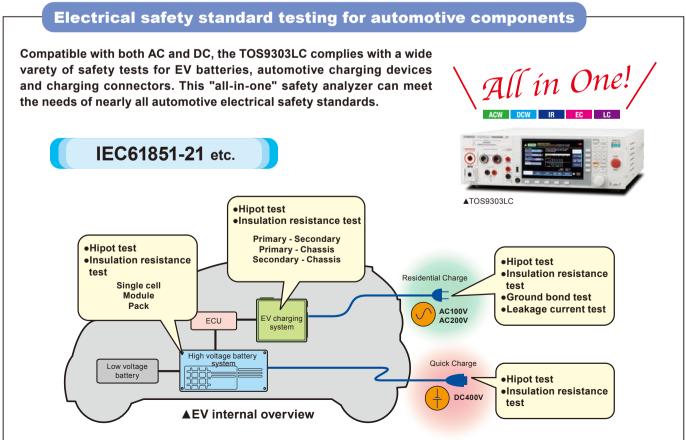
TOS9320

The TOS9320 high voltage scanner allows for rapid distribution of testing voltage from the main unit to multiple testing points for withstanding voltange and insulation resistance testing.


Channels can be controlled via an external device through the rear panel CONTROLLER INTERFACE connector. The scanner can also be used standalone or with an external control device for other Kikusui withstanding voltage and insulation resistance testing instruments. Hipot tests for electronic devices with multiple testing points have never been easier.

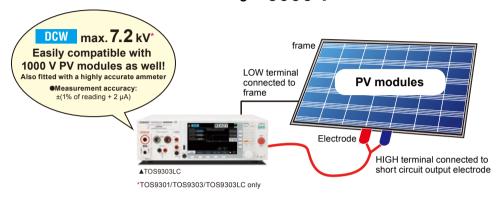
(See Application P9)


- Output can be expanded to four channels with one high-voltage scanner. The electric potential of each channel can be arbitrarily set to high, low, or open, and can be tested at any of these four points.
- Up to four high voltage scanners (total 16 channels) can be connected to each unit.
- Output of each channel and contact with testing points can be easily monitored.


Operation of the high-voltage scanner

[4 channel test system]

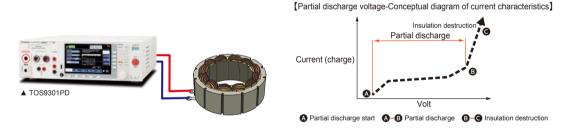
Electrical Safety Multi-analyzer


Electrical Safety Multi-analyzer

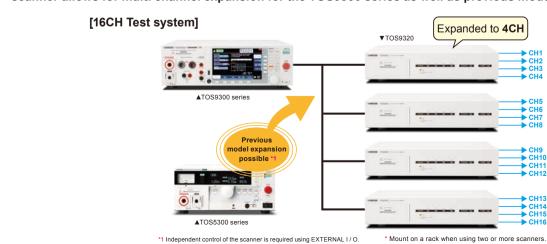
PV (solar battery) module withstanding voltage/insulation resistance testing

Withstanding voltage tests such as IEC61730-2 and JIS C 8992-2 require testing voltage to be drastically increased (4 times the maximum system voltage + 2000 V) and maintained for 1 minute.

[Voltage 1000 V adaptation grade A example]


 $1000 \text{ V} \times 4\text{-fold} + 2000 \text{ V} = \text{Test voltage} : 6000 \text{ V}$

Partial discharge


[EUT (example): small motors, transformers, insulating materials, etc.]

The partial discharge test detects the state before dielectric breakdown, so it can detect potential defects and manufacturing variations that cannot be detected by the conventional withstand voltage test.

Multi-channel withstanding voltage/insulation resistance testing

Multiple testing points can be simultaneously tested to cut costs and save time! The TOS9320 high voltage scanner allows for multi channel expansion for the TOS9300 series as well as previous models.

Electrical Safety Multi-analyzer

Unless specified otherwise, the specifications are for the following settings and conditions • The product is warmed up for at least 30 minutes.

TYP: These are typical values that are representative of situations where the product operates in an environment with an ambient temperature of 23 °C. These values do not guarantee the performance of this product.

• setting: Indicates a setting. • range: Indicates the rated value of each range. • reading: Indicates a readout value.

The various tests are abbreviated as follows: ACW: AC withstanding voltage, DCW: DC withstanding voltage, IR: insulation resistance, EC: earth continuity, LC: leakage current, TC: touch current, PCC: protective conductor current, and the protection of the protect Patient: patient leakage current, Meter: meter mode

Withstanding Voltage Test

[AC Output function]

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC			
AC output	Output range		0.050 kV to 5.000 kV								
section		Resolution	1 V	I V							
		Setting accuracy	±(1.2 % of setting + 0.	$\pm (1.2 \% \text{ of setting} + 0.02 \text{ kV}) \text{ (at no load)}$							
	Max. rated load *1		500 VA(5 kV / 100 m	A)							
	Max. rated current		100 mA (when the out	put voltage is 0.2 kV o	r higher)						
	Transformer rating		500 VA								
	Output voltage		Sine	Sine							
	waveform *2	Distortion	2 % or less. (when the	2 % or less. (when the output voltage is 0.5 kV or higher and no load or a pure resistive load is connected)							
	Crest factor		$\sqrt{2} \pm 3$ % (800 V or m	$\sqrt{2} \pm 3\%$ (800 V or more)							
	Frequency		50 Hz / 60 Hz								
		Accuracy	±0.1 %	±0.1 %							
	Voltage regulation		±3 % or less (when ch	±3 % or less (when changing from maximum rated load to no load)							
	Short-circuit current		200 mA or more (outp	out voltage 0.5 kV or hi	gher)						
	Output method		PWM switching								
Start voltage			The voltage at the star	t of the test can be set.							
		Setting range	1 % to 99 % of the tes	t voltage							
		Resolution	1 %	1 %							
Output voltage	monitor function		If the output voltage e	If the output voltage exceeds ±(10 % of setting + 0.05 kV), the output is turned off, and the protection function is activated.							

[DC Output function]

Item			TOS9301	TOS9301PD	TOS9303	TOS9303LC				
DC output	Output voltage rang	ge	0.050 kV to 7.200 kV							
section		Resolution	1 V							
		Setting accuracy	±(1.2 % of setting + 0.02 kV)	±(1.2 % of setting + 0.02 kV)						
	Max. rated load *1		100 W (5 kV/20 mA, 7.2 kV/13.9 s	nA)						
	Max. rated current		20 mA	20 mA						
Ripple	Ripple	7.2 kV no load	20 Vp-p (TYP)							
		Max. rated load	50 Vp-p (TYP)							
	Voltage regulation		1 % or less (when changing from	1 % or less (when changing from maximum rated load to no load)						
	Short-circuit curren	nt	100 mA (TYP) (200 mA peak)	100 mA (TYP) (200 mA peak)						
	Discharge function		Forced discharge after test compl	Forced discharge after test completion (discharge resistance: 125 kΩ)						
Start voltage			The voltage at the start of the test	can be set.						
		Setting range	1 % to 99 % of the test voltage							
		Resolution	1 %	1 %						
Output voltage	monitor function		If the output voltage exceeds ±(10 % of setting + 0.05 kV), the output is turned off, and the protection function is activated.							

*1. When tests are performed consecutively, output time limit and rest time may become necessary depending on the upper limit setting

[Measurement function]

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC			
Voltmeter	Measurement range	0.00 kV to 7.50 kV A	0.00 kV to 7.50 kV AC/DC							
	Resolution	0.1 V	0.1 V							
	Accuracy	±(1.2 % of reading + :	5 V)							
	Response	Can be switched betw	een true rms and mear	-value response rms co	onversion.					
		Peak-value response in a separate system (the peak-value response is for measuring the dielectric breakdown voltage while rising)								
	Hold function	The voltage measurer	nent after a test is finis	ned is held while the pa	ass/fail judgment is dis	played.				
Ammeter	Measurement range	AC: 0.00 mA to 110 n	nA, DC: 0.00 mA to 22	mA (Current including	g the active component	and reactive compone	ent)			
*1 *2	Accuracy	±(1 % of reading + 2	A) (active component							
	Response	Can be switched betw	een true rms and mear	-value response rms co	onversion.					
	Hold function	The current measurer	The current measurement after a test is finished is held while the pass judgment is displayed.							
	Offset cancel function	Cancels up to 10 mA of the current flowing through the insulation resistance and stray capacitance components across output cables								
		and the like (resistant	and the like (resistance component only for DC tests). OFF function available.							
	Calibration	Active component: C	Active component: Calibrated with the rms of a sine wave using a pure resistive load. Reactive component: Not calibrated.							

*1. During AC voltage tests, current also flows in the stray capacitance of items such as the test leads and tools. For details on stray capacitance, see "Stray Capacitance of AC Withstanding Voltage Tests"

^{*1.} When tests are performed consecutively, output time limit and rest time may become necessary depending on the upper limit setting
*2. If an AC voltage is applied to a capacitive load, the output voltage may rise higher than at no load depending on the load capacitance. Further, waveform distortions may occur if an EUT whose capacitive load in the load capacitance. tance is dependent on voltage (for example, an EUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1 000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

^{*2.} If an AC voltage is applied to a capacitive load, the output voltage may rise higher than at no load depending on the load capacitance. Further, waveform distortions may occur if an EUT whose capacitance is dependent on voltage (for example, an EUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1 000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

When the temperature and humidity are high, erroneous current from the product's internal and external high-voltage wiring sections to ground increases. When the humidity exceeds 70 %, an erroneous current of about 50 μA may be generated

Electrical Safety Multi-analyzer

[Judgment function]

Item TOS9300 TOS9301 TOS9301PD TOS9302 TOS9303 TO							TOS9303LC		
Current judgment operation			f when a judgment is n the buzzer is valid onl) for pass and fail sepa-		
UPPER FAII	Judgment method	UPPER FAIL results	when a current greater s not made during the j	than or equal to the Up	per limit is detected.				
	Display	"Upper-FAIL" is disp	layed.						
	Buzzer	On							
	SIGNAL I/O	The Upper-FAIL sign	al is generated continu	ously until a STOP sig	nal is received.				
LOWER FA	L Judgment method		when a current less the during Voltage rise tir						
	Display	"Lower-FAIL" is disp	layed.						
	Buzzer	On							
	SIGNAL I/O	The Lower-FAIL sign	The Lower-FAIL signal is generated continuously until a STOP signal is received.						
PASS	Judgment method	PASS judgment is made if Upper-FAIL or Lower-FAIL has not occurred when the test time elapses.							
	Display	"PASS" is displayed.							
	Buzzer	On (fixed to 50 ms)							
	SIGNAL I/O		The PASS signal is generated for the length of time specified by the Pass Hold setting. If Pass Hold is set to Infinity, the PASS signal is generated continuously until a STOP signal is received.						
Voltage rise rate judgment opera	tion		e is 200 V or more. The				Delay Auto) is set to on an be set in the range of		
dV/dt FAIL	Judgment method	When the voltage rise	rate (dV/dt) is less than	approx. 1 V/s.					
	Display	"Upper-FAIL (dV/dt)"	' is displayed.						
	Buzzer	ON							
	SIGNAL I/O	The U FAIL signal is	generated continuously	until a STOP signal is	received.				
Upper limit setting range	·	AC: 0.01 mA to 110.0	0 mA, DC: 0.01 mA to	21.00 mA					
Lower limit setting range		AC: 0.00 mA to 109.9	9 mA, DC: 0.00 mA to	20.99 mA, OFF. Settin	g 0.00 is equivalent to	OFF.			
Judgment accuracy *1 *2		±(1 % of setting + 5 μ	A)						
Current detection method		s to the reference value using the following method. e true rms values, convert mean-value responses to rms values							
Response speed (filter) switchin	3	Switches the current of	detection response spee	ed (sensitivity) used in	UPPER FAIL judgmen	t between five levels i	n ACW and DCW tests.		

^{*1.} During AC voltage tests, current also flows in the stray capacitance of items such as the test leads and tools. For details on stray capacitance, see "Stray Capacitance of AC Withstanding Voltage Tests"

[Timer function]

Item	TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC	
Voltage rise time settings range	0.1 s to 200.0 s						
Voltage fall time setting time *1	0.1 s to 200.0 s, OFF						
Test time setting range	0.1 s to 1000.0 s, OFF						
Judgment delay (Judge Delay) setting range *2	0.1 s to 100.0 s, AUTO *3 (DCW only)						
Accuracy	±(100 ppm of setting + 20 ms) (excluding the fall time)						

^{*1.} This setting is used only when a PASS judgment occurs in ACW and DCW tests. During a DCW test, the voltage may not drop all the way within the set time because of the electrostatic capacity inside the product and the EUT.

[Other specifications]

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
Analog monitor *1		Outputs a voltage sign	Outputs a voltage signal according to the current waveform or voltage waveform						
	I	Current waveform: So	cale 50 mA/1 V						
	V	V Voltage waveform: Scale 1 kV/1 V							
Grounding mode (GND)	<u></u>	Can be switched betw	Can be switched between Low and Guard.						
	Low	GND is connected to	GND is connected to the low terminal. Measures the current flowing across the low terminal and chassis (normal applications).						
	Guard *2		GND is connected to Guard. Measures only the current flowing through the low terminal (current flowing through the chassis is not measured) (high sensitivity, high accuracy measure-ment applications).						

^{*1.} Monitor signal output is isolated from the chassis (earth). If you connect an oscilloscope or an external device whose BNC shield is grounded, be sure to set the grounding mode (GND) to Guard. The value is not calibrated.

^{*2.} When the temperature and humidity are high, erroneous current from the product's internal and external high-voltage wiring sections to ground increases. When the humidity exceeds 70 %, an erroneous current of about 50 µA may be generated.

^{*2.} Less than the sum of the rise time and fall time.

^{*3.} If Delay Auto is set to on, LOWER judgment is not made until the charge time ends.

^{*2.} If there is a possibility that the EUT or tools and the like will be grounded or if you are uncertain, do not set GND to Guard. Doing so is extremely dangerous because the ammeter will be shorted and will not be able to measure current. For normal applications, set GND to Low.

Electrical Safety Multi-analyzer

Insulation Resistance Test

[Output function]

tem			TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC			
legative	Output voltage rang	ge	-25 V to -1000 V							
olarity		Resolution	1 V							
		Setting accuracy	±(1.2 % of setting + 2 V)							
	Max. rated load	`	1 W (-1000 V/1 mA)							
	Ripple	1 kV no load	2 Vp-p or less							
		Max. rated load	10 Vp-p or less							
	Short-circuit curren	ıt	12 mA or less	12 mA or less						
ositive	ositive Output voltage range			+50 V to +7200 V						
olarity *1		Resolution		1 V						
		Setting accuracy		±(1.2 % of setting + 0.02 kV	V)					
	Max. rated load	`	-	7.2 W (7200 V/1 mA)						
	Ripple	1 kV no load		20 Vp-p or less						
		Max. rated load		50 Vp-p or less						
	Short-circuit curren	ıt		100 mA (TYP) (200 mA pe	eak)					
Max. rated curr	ent		1 mA							
oltage regulati	ion		1 % or less (when changing from maximum rated load to no load)							
Discharge funct	ion		Forced discharge after tes	Forced discharge after test completion (discharge resistance: $20 \text{ k}\Omega$)						
Output voltage 1	monitor function		If the output voltage exce	eds ±(10 % of setting + 50 V)	, the output is turned off, a	nd the protection function is	s activated.			

^{*1.} TOS9300 are not supported.

[Measurement function]

Item			TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC
Voltmeter	Measurement range			o -1200 Vdc, Positive polar	ity: 0 Vdc to 7500 Vdc		
	Resolution		0.1 V				
	Accuracy		Negative polarity: ±(1 % o	of reading + 1 V), Positive	polarity: ±(1.2 % of reading	+ 5 V)	
Resistance	Measurement range		$0.001~\text{M}\Omega$ to $100.0~\text{G}\Omega$ (in	the range of maximum rat	ed current of 1 mA to 5 nA)		
neter	Accuracy *1 *2	$5 \text{ nA} \le i \le 50 \text{ nA *3}$	$500.000 \text{ M}\Omega \le R < 1.000$	GΩ: \pm (15 % of reading	$g + 0.5 M\Omega$)		
	(when GND is set to		$1.000 \text{ G}\Omega \le R < 10.000 \text{ G}$	Ω: $±(15 % of reading)$	$g + 5 M\Omega$)		
	Guard)		$10.000 \text{ G}\Omega \le R \le 100.000$	GΩ: \pm (20 % of reading	ng + 200 MΩ)		
	(i: measured current) (R: measurement	50 nA < i ≤ 100 nA *3	$200.000 \text{ M}\Omega \le R \le 1.000$	$G\Omega$: ±(10 % of reading	$g + 0.5 M\Omega$)		
	resistance)		$1.000 \text{ G}\Omega \le R \le 10.000 \text{ G}$	Ω: $±(10 % of reading)$	ıg + 5 MΩ)		
	issistancey		$10.000 \text{ G}\Omega \le R < 50.000 \text{ G}$	\pm (10 % of reading	ig + 50 MΩ)		
			$50.000 \text{ G}\Omega \le R \le 100.000$	GΩ: ±(20 % of reading	ng + 200 MΩ)		
		100 nA < i ≤ 200 nA *4	100.000 MΩ ≤ R < 1.000	· · · · · · · · · · · · · · · · · · ·	-		
			1.000 GΩ ≤ R < 2.000 GΩ		· · · · · · · · · · · · · · · · · · ·		
			$2.000 \text{ G}\Omega \le R < 10.000 \text{ G}$				
			$10.000 \text{ G}\Omega \le R < 50.000 \text{ G}$		· · · · · · · · · · · · · · · · · · ·		
		200 nA < i ≤ 1 μA *4	$10.000 \text{ M}\Omega \le R < 100.000$				
		$100.000 \text{ M}\Omega \le R < 1.000 \text{ G}$		<u> </u>			
		1.000 GΩ ≤ R < 10.000 G		· · · · · · · · · · · · · · · · · · ·			
		$10.000 \text{ G}\Omega \le R < 25.000 \text{ G}$					
	1 μA < i ≤ 1 mA *4	$0.001 \text{ M}\Omega \le R < 10.000 \text{ M}$		· · · · · · · · · · · · · · · · · · ·			
		$10.000 \text{ M}\Omega \le R < 100.000$		<u> </u>			
		$100.000 \text{ M}\Omega \le R < 1.000 \text{ G}$		·			
			$1.000 \text{ G}\Omega \le R < 5.000 \text{ G}\Omega$				
	Accuracy *5	5 nA ≤ i ≤ 50 nA *3	500.000 MΩ ≤ R < 1.000		<u> </u>		
	(when GND is set to		$1.000 \text{ G}\Omega \le R < 10.000 \text{ G}$				
	Low)		$10.000 \text{ G}\Omega \le R \le 100.000$	· · · · · · · · · · · · · · · · · · ·	· /		
	(i: measured current)	50 nA < i ≤ 100 nA *3	200.000 MΩ ≤ R < 1.000	· · · · · · · · · · · · · · · · · · ·			
	(R: measurement resistance)		$1.000 \text{ G}\Omega \le R < 10.000 \text{ G}$				
	resistance)		$10.000 \text{ G}\Omega \le R < 50.000 \text{ G}$		<u> </u>		
			$50.000 \text{ G}\Omega \le R \le 100.000$,		
		100 nA < i ≤ 200 nA *4	$100.000 \text{ M}\Omega \le R < 1.000 \text{ G}$		•		
			$1.000 \text{ G}\Omega \le R < 2.000 \text{ G}\Omega$				
			$2.000 \text{ G}\Omega \le R < 10.000 \text{ G}$		<u> </u>		
			$10.000 \text{ G}\Omega \le R < 50.000 \text{ G}$		<u> </u>		
		200 nA < i ≤ 1 μA *4	$10.000 \text{ M}\Omega \le R < 100.000$	· · · · · · · · · · · · · · · · · · ·			
			$100.000 \text{ M}\Omega \le R < 1.000$		· · · · · · · · · · · · · · · · · · ·		
			$1.000 \text{ G}\Omega \le R < 10.000 \text{ G}$				
			$10.000 \text{ G}\Omega \le R < 25.000 \text{ G}$		·	<u> </u>	
		$1 \mu A < i \le 1 mA *4$	$0.001 \text{ M}\Omega \le R < 10.000 \text{ M}$		· · · · · · · · · · · · · · · · · · ·		
			$10.000 \text{ M}\Omega \le R < 100.000 \text{ R}$		<u> </u>		
			$100.000 \text{ M}\Omega \le R < 1.000 \text{ M}\Omega$		<u> </u>		
			$1.000 \text{ G}\Omega \le R < 5.000 \text{ G}\Omega$		<u> </u>		
	Hold function	l		······	held while the pass judgme	nt is displayed	
	Offset cancel function				resistance across output ca		

^{*1.} Humidity: 70 %rh or less (no condensation), when there is no interference caused by wobbly test leads or other problems.

^{*2.} If the grounding mode (GND) is set to low in a highly humid environment, leakage current to ground will be generated from the high-voltage wiring sections inside the product and the high-voltage wiring sections between the product and the EUT. This leakage current to ground win be generated from the ingit-voltage wiring sections between the product and the EUT. This leakage current ranges from several nA to several tens of nA depending on the usage and wiring conditions of the optional TOS9320 high-voltage scanner and greatly affects measurement accuracy. The effects of leakage current can be reduced by making measurements with the offset enabled.

*3. Add 10 % to the accuracy when measuring 100 V or less.

*4. Add 5 % to the accuracy when measuring 100 V or less.

^{*5.} When the measured current is limited to 100 nA or more (no condensation) when the humidity is 50 %rh or less, no external disturbance is present such as swinging test leads, and the offset is enabled.

Electrical Safety Multi-analyzer

[Judgment function]

*.	nction		тодого	TOGOLOG TOGOLOGO TOGO				
Item			TOS9300	TOS9301 TOS9301PD TOS9303 TOS9303LC				
Behavior based or	1 Judgment			Igment is made. Buzzer volume level can be set in the range of 0 (OFF) to 10 for pass and fail set				
	UPPER FAIL	Judgment method		is valid only for the judgment that takes place at the end of the program. stance greater than or equal to the Upper limit is detected.				
	OTTERTALE	Judgment method	Judgment is not made during or V					
		Display	"Upper-FAIL" is displayed.					
		Buzzer	On					
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.					
	LOWER FAIL	Judgment method		istance less than or equal to the Lower limit is detected.				
	LOWER THE	buagment method	Judgment is not made during the					
		Display	"Lower-FAIL" is displayed.					
		Buzzer	On					
		SIGNAL I/O	The Lower-FAIL signal is genera	ted continuously until a STOP signal is received.				
	PASS	Judgment method		FAIL or Lower-FAIL has not occurred when the test time elapses.				
	1	Display	"PASS" is displayed.					
		Buzzer	On (fixed to 50 ms)					
		SIGNAL I/O		the length of time specified by the Pass Hold setting.				
				PASS signal is generated continuously until a STOP signal is received.				
oltage rise rate j	udgment operation			ring Voltage rise time. This is valid when Auto setting of the judgment delay (Delay Auto) is set to				
,				r more. The output is shut off when a judgment is made. Buzzer volume level can be set in the range				
	dV/dt FAIL	Judgment method	When the voltage rise rate (dV/dt	is less than approx. 1 V/s.				
		Display	"Lower-FAIL (dV/dt)" is displayed	d.				
		Buzzer	ON					
		SIGNAL I/O	The L FAIL signals are generated	continuously until a STOP signal is received.				
pper limit settin	g range	'	$0.001~\text{M}\Omega$ to $100.000~\text{G}\Omega$ (in the	range up to the maximum rated current), OFF				
ower limit settin			$0.000 \text{ M}\Omega$ to 99.999 G Ω (in the ra	ange up to the maximum rated current), OFF. Setting 0.000 is equivalent to OFF.				
ccuracy *1 *2 *		5 nA ≤ i ≤ 50 nA *4	$500.000 \text{ M}\Omega \le R < 1.000 \text{ G}\Omega$:	$\pm (15\% \text{ of setting} + 0.51 \text{ M}\Omega)$				
when GND is set			1.000 GΩ \leq R $<$ 10.000 GΩ:	$\pm (15\% \text{ of setting} + 15 \text{ M}\Omega)$				
measured curre	ent)		10.000 GΩ ≤ R ≤ 100.000 GΩ:	$\pm (20 \% \text{ of setting} + 210 \text{ M}\Omega)$				
R: measurement	resistance)	50 nA < i ≤ 100 nA *4	$200.000 \text{ M}\Omega \le R < 1.000 \text{ G}\Omega$:	$\pm (10\% \text{ of setting} + 0.51 \text{ M}\Omega)$				
			1.000 GΩ ≤ R < 10.000 GΩ:	$\pm (10\% \text{ of setting} + 15 \text{ M}\Omega)$				
			10.000 GΩ ≤ R < 50.000 GΩ:	$\pm (10\% \text{ of setting} + 60 \text{ M}\Omega)$				
			$50.000 \text{ G}\Omega \le R \le 100.000 \text{ G}\Omega$:	$\pm (20 \% \text{ of setting} + 210 \text{ M}\Omega)$				
		100 nA < i ≤ 200 nA *5	$100.000 \text{ M}\Omega \le R < 1.000 \text{ G}\Omega$:	$\pm (7\% \text{ of setting } + 0.51 \text{ M}\Omega)$				
		100 IIA 113 200 IIA 3	1.000 GΩ ≤ R < 2.000 GΩ:	$\pm (7\% \text{ of setting} + 15 \text{ M}\Omega)$				
			$2.000 \text{ G}\Omega \le R < 10.000 \text{ G}\Omega$:	$\pm (7\% \text{ of setting} + 13 \text{ Msz})$ $\pm (7\% \text{ of setting} + 20 \text{ M}\Omega)$				
			$10.000 \text{ G}\Omega \le R < 10.000 \text{ G}\Omega$:	$\pm (7\% \text{ of setting} + 20 \text{ Ms2})$ $\pm (7\% \text{ of setting} + 110 \text{ M}\Omega)$				
		200 nA < i ≤ 1 μA *5		$\pm (5\% \text{ of setting} + 10 \text{ M}\Omega)$				
		200 IIA < 1 ≤ 1 μA · 3	$10.000 \text{ M}\Omega \le R < 100.000 \text{ M}\Omega$: $100.000 \text{ M}\Omega \le R < 1.000 \text{ G}\Omega$:	$\pm (5\% \text{ of setting} + 0.50 \text{ Msz})$ $\pm (5\% \text{ of setting} + 0.51 \text{ M}\Omega)$				
			1.000 GΩ ≤ R < 10.000 GΩ:	$\pm (5\% \text{ of setting} + 15 \text{ M}\Omega)$				
		1 4 1 4 *5	10.000 GΩ ≤ R < 25.000 GΩ:	$\pm (5\% \text{ of setting} + 60 \text{ M}\Omega)$				
		$1 \mu A < i \le 1 mA *5$	$0.001 \text{ M}\Omega \le R < 10.000 \text{ M}\Omega$:	$\pm (2\% \text{ of setting} + 0.013 \text{ M}\Omega)$				
			$10.000 \text{ M}\Omega \le R < 100.000 \text{ M}\Omega$:	$\pm (2\% \text{ of setting} + 0.04 \text{ M}\Omega)$				
			100.000 MΩ ≤ R < 1.000 GΩ:	$\pm (2\% \text{ of setting} + 0.31 \text{ M}\Omega)$				
**			1.000 GΩ ≤ R < 5.000 GΩ:	$\pm (2\% \text{ of setting} + 13 \text{ M}\Omega)$				
ccuracy *6	to Low)	$5 \text{ nA} \le i \le 50 \text{ nA *4}$	$500.000 \text{ M}\Omega \le R < 1.000 \text{ G}\Omega$:	$\pm (25\% \text{ of setting} + 0.51 \text{ M}\Omega)$				
when GND is set measured curre			1.000 GΩ \leq R $<$ 10.000 GΩ:	$\pm (25\% \text{ of setting} + 15 \text{ M}\Omega)$				
R: measurement			$10.000 \text{ G}\Omega \le R \le 100.000 \text{ G}\Omega$:	$\pm (30 \% \text{ of setting} + 210 \text{ M}\Omega)$				
		50 nA < i ≤ 100 nA *4	200.000 MΩ \leq R $<$ 1.000 GΩ:	$\pm (20 \% \text{ of setting} \pm 0.51 \text{ M}\Omega)$				
			1.000 GΩ≤ R < 10.000 GΩ:	$\pm (20 \% \text{ of setting} + 15 \text{ M}\Omega)$				
			10.000 GΩ≤ R < 50.000 GΩ:	$\pm (20 \% \text{ of setting} \pm 60 \text{ M}\Omega)$				
			$50.000 \text{ G}\Omega \le R \le 100.000 \text{ G}\Omega$:	$\pm (30 \% \text{ of setting} + 210 \text{ M}\Omega)$				
		100 nA < i ≤ 200 nA *5	100.000 MΩ≤ R < 1.000 GΩ:	$\pm (10 \% \text{ of setting} + 0.51 \text{ M}\Omega)$				
			1.000 GΩ \leq R \leq 2.000 GΩ:	$\pm (10 \% \text{ of setting} + 15 \text{ M}\Omega)$				
		2.000 GΩ≤ R < 10.000 GΩ:	$\pm (10 \% \text{ of setting} + 20 \text{ M}\Omega)$					
		10.000 GΩ≤ R < 50.000 GΩ:	$\pm (10 \% \text{ of setting} + 110 \text{ M}\Omega)$					
		200 nA < i ≤ 1 μA *5	$10.000 \text{ M}\Omega \le R < 100.000 \text{ M}\Omega$:	$\pm (5 \% \text{ of setting} + 0.06 \text{ M}\Omega)$				
			100.000 MΩ≤ R < 1.000 GΩ:	$\pm (5 \% \text{ of setting} + 0.51 \text{ M}\Omega)$				
			1.000 GΩ≤ R < 10.000 GΩ:	$\pm (5\% \text{ of setting} + 15 \text{ M}\Omega)$				
			10.000 GΩ≤ R < 25.000 GΩ:	$\pm (5\% \text{ of setting} + 60 \text{ M}\Omega)$				
	$1 \mu A < i \le 1 mA *5$	0.001 MΩ≤ R < 10.000 MΩ:	$\pm (2\% \text{ of setting} + 0.013 \text{ M}\Omega)$					
			10.000 MΩ≤ R < 100.000 MΩ:	$\pm (2\% \text{ of setting} + 0.04 \text{ M}\Omega)$				
			10.000 MΩ≤ R < 100.000 MΩ: 100.000 MΩ≤ R < 1.000 GΩ:	$\pm (2 \text{ % of setting} + 0.04 \text{ M}\Omega)$ $\pm (2 \text{ % of setting} + 0.31 \text{ M}\Omega)$				

^{*1.} Making judgments on 200 µA or less requires at least 3 seconds after the rise time ends. Making judgments when the low pass filter is set to on requires at least 10 seconds after the rise time ends.

^{*2.} Humidity: 70 %rh or less (no condensation), when there is no interference caused by wobbly test leads or other problems.

^{*3.} If the grounding mode (GND) is set to low in a highly humid environment, leakage current to ground will be generated from the high-voltage wiring sections inside the product and the High-voltage wiring sections between the product and the EUT. This leakage current ranges from several nA to several tens of nA depending on the usage and wiring conditions of the optional TOS9320 high-voltage scanner and greatly affects measurement accuracy. The effects of leakage current can be reduced by making measurements with the offset enabled.

^{*4.} Add 10 % to the accuracy when measuring 100 V or less.

^{*5.} Add 5 % to the accuracy when measuring 100 V or less.

^{*6.} When the measured current is limited to 100 nA or more (no condensation) when the humidity is 50 %rh or less, no external disturbance is present such as swinging test leads, and the offset is enabled.

Electrical Safety Multi-analyzer

[Timer function]

Item	TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC	
Voltage rise time settings range	0.1 s to 200.0 s					
Test time setting range	0.1 s to 1000.0 s, OFF					
Judgment delay (Judge Delay) setting range *1	0.1 s to 100.0 s, AUTO *2					
Accuracy *3	±(100 ppm of setting + 20 ms)					

- *1. Less than the sum of the rise time and test time.

 *2. If Delay Auto is set to on, UPPER judgment is not made until the charge time ends.

 *3. This excludes fall time.

[Other specifications]

Item		TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC
Grounding mode (GND) *1		Can be switched between Low and Guard.				
	Low	GND is connected to the low terminal.				
		Measures the current flowing across the low terminal and chassis (normal applications).				
	Guard	GND is connected to Guard. Measures only the current flowing through the low terminal (cur-rent flowing through the chassis is not				
		measured) (high sensitivity, high accuracy measurement applications).				
Filter function A low-pass filter can be inserted into the ammeter measurement circuit. *2						

^{*1.} If there is a possibility that the EUT or tools and the like will be grounded or if you are uncertain, do not set GND to Guard. Doing so is extremely dangerous because the ammeter will be shorted and will not be able to measure current. For normal applications, set GND to Low.

*2. When the low pass filter is on, a judgment delay of at least 5 seconds and a test time are required.

Electrical Safety Multi-analyzer

Earth Continuity Test

[Output function]

Item			TOS9302	TOS9303	TOS9303LC		
Current set	Current setting range *1		3.0 A to 42.0 A AC/DC				
	Re	esolution	0.1 A				
	Ad	ccuracy	±(1 % of setting + 0.4 A)				
AC	Maximum rated output	*2	220 VA (at the output terminal)				
	Distortion		2 % or less (20 A or more, using a 0.1 Ω pure	2 % or less (20 A or more, using a 0.1 Ω pure resistive load)			
	Frequency		Select 50 Hz or 60 Hz. Sine				
	Ad	ccuracy	±200 ppm				
	Open terminal voltage		6 Vrms or less	6 Vrms or less			
	Output method		PWM switching	PWM switching			
DC	Maximum rated output		220 W (at the output terminal)	220 W (at the output terminal)			
	Ripple		±0.4 Ap-p or less (TYP)	±0.4 Ap-p or less (TYP)			
	Open terminal voltage		6.0 V or less	6.0 V or less			

^{*1.} No greater than the maximum rated output and resistance no greater than the output terminal voltage 5.4 V.

[Measurement function]

Item		TOS9302	TOS9303	TOS9303LC		
Output ammeter	Measurement range	0.0 A to 45.0 A AC/DC				
	Resolution	0.01 A				
	Accuracy	±(1 % of reading + 0.2 A)				
	Response	AC: RMS value display of average value resp	onse, DC: mean value			
	Hold function	The current measurement after a test is finished is held while the pass or fail judgment is displayed.				
Output voltmeter	Measurement range	AC: 0.00 V to 6.00 V, DC: 0.00 V to 5.50 V				
	Resolution	0.001 V				
	Offset cancel function	Cancels up to 5 V (AC/DC) of the unnecessar	y voltage from measurements. OFF function	available.		
	Accuracy	±(1 % of setting + 0.02 V)				
	Response	AC: RMS value display of average value response, DC: mean value				
	Hold function	The voltage measurement after a test is finished is held while the pass or fail judgment is displayed.				
Resistance meter	Measurement range *1	$1 \text{ m}\Omega$ to 600 m Ω				
	Resolution	Ι mΩ				
	Offset cancel function	Cancels up to 10Ω of the unnecessary resistance from measurements. OFF function available.				
	Accuracy	$\pm (2 \% \text{ of reading} + 3 \text{ m}\Omega)$	·	·-		
	Hold function	The resistance measurement after a test is fin	ished is held while the pass judgment is displ	ayed.		

^{*1.} Calculated from the measured output voltage and measured output current.

[Judgment function]

Item		·	TOS9302	TOS9303	TOS9303LC		
Behavior based on judgment			can be set in the range of 0 (OFF) to 10 for pa	Judgment based on resistance or sensing voltage can be selected. The output is shut off when a judgment is made. Buzzer volume level can be set in the range of 0 (OFF) to 10 for pass and fail separately. In an auto test, the buzzer is valid only for the judgment that takes place at the end of the program.			
	UPPER FAIL	Judgment method	UPPER FAIL results when a resistance great ment is not made during a contact check.	er than or equal to the Upper limit is detected	d or when a sensing voltage is detected. Judg-		
		Display	"Upper-FAIL" is displayed.				
		Buzzer	On				
		SIGNAL I/O	The Upper-FAIL signal is generated continue	ously until a STOP signal is received.			
	LOWER FAIL	Judgment method	LOWER FAIL results when a resistance less	than or equal to the lower limit (Lower) is de	tected or when a sensing voltage is detected.		
		Display	"Lower-FAIL" is displayed.				
		Buzzer	On				
		SIGNAL I/O	The Lower-FAIL signal is generated continu	ously until a STOP signal is received.			
	PASS	Judgment method	PASS judgment is made if Upper-FAIL or Lo	ower-FAIL has not occurred when the test tim	e elapses.		
		Display	"PASS" is displayed.				
		Buzzer	On (fixed to 50 ms)				
		SIGNAL I/O	The PASS signal is generated for the length of the PASS signal is set to Infinity, the PASS signal is provided in the PASS signal is generated for the length of the PASS signal is generated for the length of the PASS signal is generated for the length of the PASS signal is generated for the length of the leng	of time specified by the Pass Hold setting. I is generated con-tinuously until a STOP sign	nal is received.		
Resistance judg-	Upper limit setting	g range	0.0001 Ω to 10.0000 Ω				
ment	Lower limit settin	g range	0.0000 Ω to 9.9999 Ω				
	Judgment accurac	y	$\pm (2 \% \text{ of setting} + 3 \text{ m}\Omega)$	$\pm (2\% \text{ of setting} + 3 \text{ m}\Omega)$			
Voltage judgment	Upper limit setting	g range	0.001 V to 5.000 V AC/DC	0.001 V to 5.000 V AC/DC			
	Lower limit settin	g range	0.000 V to 4.999 V AC/DC				
	Judgment accurac	y	$\pm (2\% \text{ of setting} + 0.05 \text{ V})$				
Calibration			Calibrated using a pure resistive load (with the	Calibrated using a pure resistive load (with the rms of a sine wave for AC)			
Contact check fun	iction		Checks that current flows through the test lea	ads and then starts the test. (OFF setting avail	able)		

[Timer function]

Item	TOS9302	TOS9303	TOS9303LC	
Current rise time settings range	tings range 0.1 s to 200.0 s			
Current fall time setting time *1	0.1 s to 200.0 s, OFF			
Test time	0.1 s to 1000.0 s, OFF			
Accuracy	±(100 ppm of setting + 20 ms) (excluding the fall time)			

^{*1.} This setting is used only when a PASS judgment occurs. During a DC test, the voltage may not drop all the way within the set time because of the electrostatic capacity inside the product and the EUT.

^{*2.} When tests are performed consecutively, output time limit and rest time may become necessary depending on the upper limit setting.

Electrical Safety Multi-analyzer

Partial Discharge Test

[Output function]

Item			TOS9301PD
AC output section	Output range		0.050 kV to 5.000 kV
		Resolution	1 V
		Setting accuracy	±(1.2 % of setting + 0.02 kV) (at no load)
	Max. rated load		250 VA (5 kV/ 50 mA)
	Max. rated current Output voltage waveform *1		50 mA (when the output voltage is 0.2 kV or higher)
			Sine
		Distortion	2 % or less. (when the output voltage is 0.5 kV or higher and no load or a pure resistive load is connected)
	Crest factor		$\sqrt{2} \pm 3\%$ (800 V or higher)
	Frequency		50 Hz/60 Hz
		Accuracy	±0.1 %
	Voltage regulation		±3 % or less (when changing from maximum rated load to no load)
	Output method		PWM switching
Output voltage mo	nitor function		If the output voltage exceeds ±(10 % of setting + 0.05 kV), the output is turned off, and the protection function is activated.

^{*1.} If an AC voltage is applied to a capacitive load, the output voltage may rise higher than at no load depending on the load capacitance. Further, waveform distortions may occur if an EUT whose capacitance is dependent on voltage (for example, an EUT that consists of ceramic capacitance) is connected as the load. However, if the test voltage is 1.5kV, the effect of a capacitance of 1 000pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

[Measurement function]

Item			TOS9301PD
Voltmeter	Measurement range		0.00 kV to 7.50 kV AC/DC
	Resolution		0.1 V
	Accuracy *1		±(1.2 % of reading + 5 V)
	Response		Can be switched between true rms and peak-value response.
	Hold function		The voltage measurement after a test is finished is held while the pass/fail judgment is displayed.
Electric charge	Electric charge measu	rement method	IEC 60664-1 Edition 3.0 compliant *2
measurement	Measurement range		0 pC to 10000 pC
	Measurement	100pC range	0.1 pC
	resolution	1000pC range	0.1 pC
		10000pC rang	1 pC
	Accuracy *1 *3	100pC range	±(5 % of full scale + 7 pC)
		1000pC range	±(5 % of full scale)
		10000pC rang	±(5 % of full scale)
	Measurement interval		Determined based on the measured values in each cycle of an applied voltage.
	Hold function		The electric charge after a test is finished is held while the pass judgment is displayed.
	Maximum electrostati	ic capacity of the EUT	10 nF
	Peak hold function		Holds the maximum value during a measurement.
	Filter function		A low-pass filter can be inserted into the electric charge measurement circuit.
	Discharge inception v inception voltage mea		Measures the voltage at which discharge exceeding a preset electric charge starts and the voltage at which discharge ceases (complies with IEC 60664-1 third edition *2).
	Calibration (Precalibr	ation)	Calibrate using the built-in calibration capacitor (1000 pF).
	Pulse counting function	on	Counts the number of pulses that have passed through the high-pass filter and makes a FAIL judgment if the count exceeds the upper limit.
		Upper limit setting range	1 to 100000
	BPF characteristics sv	vitching function	Can switch the characteristics of the band-pass filter in the electric charge measuring circuit
		Center frequency	100 kHz / 160 kHz / 300 kHz
	Coupling capacitor		0.01 µF

^{*1.} When the pulse interval is 200 µs or more.

*2. Can be used to conduct tests based on the principles of IEC 60664-1 Edition 3.0, including the test circuit (for earthed test specimen) and the test voltages. However, does not fully meet the accuracy requirements.

^{*3.} When Band Pass Filter is set to 160 kHz.

Electrical Safety Multi-analyzer

[Judgment function]

Item			TOS9301PD
Electric discharge	judgment		The output is shut off when a judgment is made.
	UPPER FAIL Judgment method		A current higher than or equal to the upper limit is measured.
	(Current)	Display	"Upper-FAIL (Current)" is displayed.
		Buzzer	On
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.
	UPPER FAIL	Judgment method	An electric charge greater than or equal to the upper limit is measured.
	(Coulomb)	Display	"Upper-FAIL (Coulomb)" is displayed.
		Buzzer	On
	SIGNAL I/O		The Upper-FAIL signal is generated continuously until a STOP signal is received.
	UPPER FAIL Judgment method		A discharge pulse count greater than or equal to the upper limit is measured.
	(Pulse)	Display	"Upper-FAIL (Pulse)" is displayed.
		Buzzer	On
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.
	PASS	Judgment method	Upper-FAIL does not happen after the test time has elapsed.
		Display	"PASS" is displayed.
		Buzzer	On
	SIGNAL I/O		The PASS signal is generated for the length of time specified by the Pass Hold setting. If Pass Hold is set to Infinity, the PASS signal is generated continuously until a STOP signal is received.
Upper current limit	Upper current limit		50 mA (with no calibration)
Upper limit of elec	Upper limit of electric charge Setting range		1 pC to 10000 pC
(Upper Coulomb)	_	Accuracy	As per the accuracy of electric charge measurement
Pulse count judgme (Upper Pulse Coun			1 to 100000 (with no calibration)

[Timer function]

Item	TOS9301PD
Voltage rise time (Rise Time) setting range	0.1 s to 200.0 s
Voltage fall time (Fall Time) setting range *1	0.1 s to 200.0 s, OFF
Test time setting range	0.1 s to 1000.0 s, OFF
Accuracy	±(100 ppm of setting + 20 ms) (excluding Fall Time)

^{*1.} This setting is used only when PASS judgment occurs.

[Other specifications]

[
Item		TOS9301PD
Analog monitor *1		Outputs a voltage signal according to the current waveform, voltage waveform, or electric discharge waveforms.
	V	Voltage waveform: Scale 1 kV/1 V
	Qpd *2	Electric discharge: Full scale of the scale measurement range/10 V
	Ipd *3	Partial discharge current waveform

^{*1.} Monitor signal output is isolated from the chassis (earth).

*2. During PD tests, the monitor signal common is connected to the chassis (ground). The Qpd waveforms are the ones output from the peak detection circuit and are reset after each cycle. The lpd waveforms are the discharged ones after passing through the filter in the measurement section of the TOS93 series. Therefore, the scale varies depending on the frequency characteristics of the actual discharge waveform.

^{*3.} The lpd waveforms are the ones that can be obtained after the actual discharge waveforms have passed the TOS9301PD measurement filter. Therefore, the scale varies according to the frequency response of the discharge waveform.

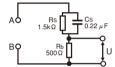
Electrical Safety Multi-analyzer

Leakage Current Test

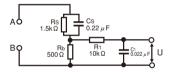
[Measurement function]

Item				TOS9303LC
Measurement	rurement TC			Touch current measurement
Item		Measurement mode		Uses a measurement circuit network representing the impedance of a human body and measures the voltage drop across a reference resistance to calculate the touch current.
		Probe settings	Enc - Pe	A terminal: measurement terminal (for connecting to the enclosure of the EUT) B terminal: open
			Enc - Enc	A and B terminals: measurement terminal (for connecting to the enclosure of the EUT)
			Enc - Liv Enc - Neu	A terminal: measurement terminal (for connecting to the enclosure of the EUT) B terminal: open
	PCC			Protective conductor current measurement
	Measurement		nethod	Measures the voltage drop across a reference resistance inserted in the middle of the protective ground line to calculate the protective conductor current. The measurement impedance is 150Ω .
	Patient	Patient Measurement method		Patient leakage current measurement
				Uses a network conforming to IEC 60601 and measures the voltage drop across a reference resistance to calculate the patientleakage current.
	Meter	'		Measures the current flowing or voltage applied across the A and B terminals (simultaneous measurement not possible).
		Measurement method	Current measurement	Uses a measurement circuit network representing the impedance of a human body and measures the voltage drop across a reference resistance to calculate the current flowing across the A and B terminals.
			Voltage measurement	Measures the voltage applied across the A and B terminals.
Current measure	ment mode		DC	Eliminates AC components and measures only the DC component.
			RMS	Measures the true rms value (switch AC and AC+DC)
			Peak *1	Measures waveform peak values

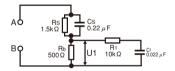
^{*1.} Current measurements may not be stable due to the effects of the power supply line waveform or the wiring environment between the product and the EUT.

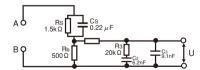

Electrical Safety Multi-analyzer

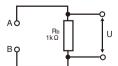
[Measurement circuit network]

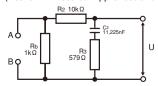

Item		TOS9303LC
Network	A (IEC 60990 compliant) *1	$(1.5 \text{ k}\Omega // 0.22 \text{ \mu}\text{F}) + 500 \Omega$, reference measurement element: 500Ω
	B (IEC 60990 compliant)	$(1.5~k\Omega//0.22~\mu\text{F}) + 500~\Omega//(10~k\Omega + 22~n\text{F}), reference measurement element: 500~\Omega, voltage measurement U1 and U3 switchable$
	C (IEC 60990 compliant)	$(1.5~k\Omega~//~0.22~\mu F) + 500~\Omega~//~(10~k\Omega + (20~k\Omega + 6.2~nF)~//~9.1~nF), reference~measurement~element:~500~\Omega,~voltage~measurement~U1~and~U3~switchable$
	D (Electrical Appliances and Materials Safety Act, etc.)	1 kΩ, reference measurement element: 1 kΩ
	E (Electrical Appliances and Materials Safety Act)	$1 k\Omega$ // (10 kΩ + 11.225 nF + 579 Ω), reference measurement element:1 kΩ
	F (UL and the like)	1.5 kΩ // 0.15 μF, reference measurement element: 1.5 kΩ
	G	$2~\mathrm{k}\Omega$, reference measurement element: $2~\mathrm{k}\Omega$
	H (IEC 61010-1)	375 Ω // 0.22 μF + 500 Ω, reference measurement element: 500 Ω
	I (Patient, IEC 60601-1wet)	$1 k\Omega // 10 k\Omega + 0.015 \mu$ F, reference measurement element: 1 kΩ
	J (through)	For voltmeter calibration
	PCC-1	150 Ω , reference measurement element: 150 Ω
	PCC-2 (IEC 60598-1)	150 Ω // 1.5 μ F, reference measurement element: 150 Ω
Network constant	tolerance	Resistance: ±0.1 %, capacitor 0.15 μF: ±2 %, others: ±1 %

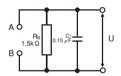
^{*1.} Current measurements may not be stable due to the effects of the power supply line waveform or the wiring environment between the product and the EUT.

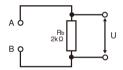

Measurement circuit network
 (NetworkA IEC 60990 Fig. 3 U1 measurement)

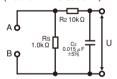

 Measurement circuit network (NetworkB IEC 60990 Fig. 4 U2 measurement)


 Measurement circuit network (NetworkB1 IEC 60990 Fig. 4 U1 measurement)

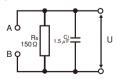

Measurement circuit network
 (NetworkC IEC 60990 Fig. 5 U3 measurement)


Measurement circuit network
 (NetworkD Electrical Appliances and Materials Safety Act etc.)


 Measurement circuit network (NetworkE Electrical Appliances and Materials Safety Act etc.)


 Measurement circuit network (NetworkF IEC 61029)

 Measurement circuit network (NetworkG IEC 60745)


 Measurement circuit network (Networkl IEC 60601-1)

 Measurement circuit network (NetworkPCC-1)

 Measurement circuit network (NetworkPCC-2 IEC60598-1)

Electrical Safety Multi-analyzer

[Measurement section] The range varies by network

Item				TOS9303LC
Measurement range	Range 1			DC, RMS: 1.00 µA(min.) to 200.00 µA(max), Peak: 1.00 µA(min.) to 282.00 µA(max)
*1	Range 2			DC, RMS: 12.50 μA(min.) to 2000.0 μA(max), Peak: 17.50 μA(min.) to 2830.0 μA(max)
	Range 3			DC, RMS: 125.0 µA(min.) to 20.000 mA(max), Peak: 175.0 µA(min.) to 28.300 mA(max)
	Range 4			DC, RMS: 1.250 mA(min.) to 100.00 mA(max), Peak: 1.750 mA(min.) to 100.00 mA(max)
	Range swi	tching		Auto or Fix selectable. If a measurement falls outside the measurement range of each range, the measured value blinl as a warning.
		Auto		The range is set automatically according to the measurements.
		Fix		For TC and PCC measurements, the measurement range is selected automatically according to the UPPER value. For meter measurements, the range is fixed to the specified range.
	Bandwidtl	n switchin	g	Can be expanded to a bandwidth that allows measurements from 0.1 Hz, which is required in the measurement of med cal instruments and the like.
		Normal		Normal measurement bandwidth: 15 Hz to 1 MHz
		Expand		Expands the measurement range to 0.1 Hz to 1 MHz
otal accuracy *2	Range 1	DC		$\pm (5.0 \% \text{ of reading} \pm 2 \mu\text{A})$
when network A, B, or		RMS	0.1 Hz ≤ f < 15 Hz	$\pm (10.0\% \text{ of reading} + 2 \mu\text{A})$
C is used) *3			$15 \text{ Hz} \le f \le 100 \text{ kHz}$	$\pm (7.0\% \text{ of reading} + 2 \mu\text{A})$
			100 kHz < f ≤ 1 MHz	$\pm (10.0\% \text{ of reading} + 2 \mu\text{A})$
		Peak	0.1 Hz ≤ f < 15 Hz	±(10.0 % of reading + 10 μA)
			15 Hz ≤ f ≤ 1 kHz	±(10.0 % of reading + 10 μA)
			1 kHz < f ≤ 100 kHz	$\pm (10.0\% \text{ of reading} + 10 \mu\text{A})$
			100 kHz < f ≤ 1 MHz	±(20.0 % of reading + 10 µA)
	Range 2 DC			$\pm (5.0 \% \text{ of reading} + 20 \mu\text{A})$
		RMS	0.1 Hz ≤ f < 15 Hz	$\pm (10.0 \% \text{ of reading} + 10 \mu\text{A})$
			15 Hz ≤ f ≤ 100 kHz	$\pm (7.0 \% \text{ of reading} + 8 \mu\text{A})$
			100 kHz < f ≤ 1 MHz	$\pm (10.0 \% \text{ of reading} + 10 \mu\text{A})$
		Peak	0.1 Hz ≤ f < 15 Hz	$\pm (10.0 \% \text{ of reading} + 10 \mu\text{A})$
			$15 \text{ Hz} \le f \le 1 \text{ kHz}$	$\pm (10.0 \% \text{ of reading} + 10 \mu\text{A})$
			1 kHz < f ≤ 100 kHz	$\pm (10.0 \% \text{ of reading} + 10 \mu\text{A})$
			100 kHz < f ≤ 1 MHz	±(20.0 % of reading + 10 µA)
	Range 3	DC		$\pm (5.0 \% \text{ of reading} + 50 \mu\text{A})$
		RMS	0.1 Hz ≤ f < 15 Hz	$\pm (10.0 \% \text{ of reading} + 20 \mu\text{A})$
			15 Hz ≤ f ≤ 100 kHz	±(7.0 % of reading + 20 μA)
			100 kHz < f ≤ 1 MHz	±(10.0 % of reading + 20 μA)
		Peak	0.1 Hz ≤ f < 15 Hz	$\pm (10.0 \% \text{ of reading} \pm 50 \mu\text{A})$
			15 Hz ≤ f ≤ 1 kHz	$\pm (7.0 \% \text{ of reading} + 50 \mu\text{A})$
			1 kHz < f ≤ 100 kHz	$\pm (10.0 \% \text{ of reading} \pm 50 \mu\text{A})$
			100 kHz < f ≤ 1 MHz	±(20.0 % of reading + 50 µA)
	Range 4	DC		$\pm (5.0 \% \text{ of reading} + 0.5 \text{ mA})$
		RMS	0.1 Hz ≤ f < 15 Hz	±(10.0 % of reading + 0.2 mA)
			15 Hz ≤ f ≤ 100 kHz	±(7.0 % of reading + 0.2 mA)
			100 kHz < f ≤ 1 MHz	±(10.0 % of reading + 0.2 mA)
		Peak	0.1 Hz ≤ f < 15 Hz	±(10.0 % of reading + 0.5 mA)
			15 Hz ≤ f ≤ 1 kHz	$\pm (7.0 \% \text{ of reading} + 0.5 \text{ mA})$
			1 kHz < f ≤ 100 kHz	±(10.0 % of reading + 0.5 mA)
			100 kHz < f ≤ 1 MHz	$\pm (20.0 \% \text{ of reading} + 0.5 \text{ mA})$
nput resistance		'		1 MΩ ± 1 %
nput capacitance				200 pF or less (internal voltmeter input capacitance: 100 pF or less)
Common mode rejection	ratio			10 kHz or less: 60 dB or more, 10 kHz to 1 MHz: 40 dB or more
Offset cancel function				Cancels up to 10 mA of the unnecessary current from measurements. OFF function available.
1 Voltmeter hand evna		21.1.1	. 17: 1 . 1	

If a network other than A, B, C or H is used, calculate as follows:

For Network D, E, or I, the \blacksquare part of $\pm(\Box\%$ of reading + \blacksquare A) is half the value.

For F, the part is one-third the value.
For G, the part is one-fourth the value.
For PCC-1 or PCC-2, the part is 3.3 times the value.

^{*1.} Voltmeter band expansion is possible when network I is selected.
*2. 0.1 Hz≤f<15 Hz is for when voltmeter band expansion (VoltMeter BandWidth) is set to Expand. Requires at least 120 second of test time.

^{*3,} A value converted to current for measurements using Network A, B, C or H with voltmeter accuracy of this product as the reference.

TOS9300 SERIES Electrical Safety Multi-analyzer

[Judgment function]	The range varies by network
---------------------	-----------------------------

Item			TOS9303LC	
Behavior based on judgment			Judgment starts after the judgment delay (Judge Delay). Buzzer volume level can be set in the range of 0 (OFF) to 10 for pass and fail separately. In an auto test, the buzzer is valid only for the judgment that takes place at the end of the program.	
	UPPER FAIL	Judgment method	UPPER FAIL results when a current greater than or equal to the upper limit (Upper) is detected.	
		Display	"Upper-FAIL" is displayed.	
		Buzzer	On	
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.	
	LOWER FAIL	Judgment method	LOWER FAIL results when a current less than or equal to the lower limit (Lower) is detected.	
		Display	"Lower-FAIL" is displayed.	
		Buzzer	On	
		SIGNAL I/O	The Lower-FAIL signal is generated continuously until a STOP signal is received.	
	PASS	Judgment method	PASS judgment is made if Upper-FAIL or Lower-FAIL has not occurred when the test time elapses.	
		Display	"PASS" is displayed.	
		Buzzer	On (fixed to 50 ms)	
		SIGNAL I/O	The PASS signal is generated for the length of time specified by the Pass Hold setting. If Pass Hold is set to Infinity, the PASS signal is generated continuously until a STOP signal is received.	
Upper Setting	RANGE 1	·	DC, RMS: 0.1 µA(min.) to 200 µA(max), Peak: 0.1 µA(min.) to 282 µA(max)	
range	RANGE 2		DC, RMS: 15.1 µA(min.) to 2.00 mA(max), Peak: 21.3 µA(min.) to 2.83 mA(max)	
	RANGE 3		DC, RMS: 151 µA(min.) to 20.00 mA(max), Peak: 213 µA(min.) to 28.3 mA(max)	
	RANGE 4		DC, RMS: 1.51 mA(min.) to 100 mA(max), Peak: 2.13 mA(min.) to 100 mA(max)	
Lower Setting ra	nge		A value that is -1 digit from the upper setting range.	
Judgment accura	cy		Conforms to total accuracy(Read "reading" as "upper setting" of total accuracy.)	

[Timer function]

Item		TOS9303LC
Judgment delay (Judge Delay)	Setting range	1.0 s to 1000.0 s, OFF
	Accuracy	$\pm (100 \text{ ppm of setting} + 20 \text{ ms})$
Test time	Setting range	1.0 s to 1000.0 s, OFF
	Accuracy	±(100 ppm of setting + 20 ms)

[Other specifications]

Item			TOS9303LC		
Voltage conversion	n		Displays the estimated current converted with the preset supply voltage (Conv Voltage), based on the voltage supplied to the EUT and the measured current. (This is invalid in meter mode.)		
		Setting range	80.0 V to 300.0 V, OFF		
		Resolution	0.1 V		
D		Resolution			
	polarity selection		Set the polarity of the power supply line to supply to the EUT to positive or negative.		
Single fault mode	(Condition) selection		Set the EUT single fault mode to normal, neutral line disconnection (Fault Neu), or protective ground wire disconnection (Fault PE).		
Ground check			In the touch current test between the enclosure and power supply line, if the EUT enclosure is grounded, CONTACT FAIL occurs.		
Measurement che	ck		Checks the measurement function by shorting across the A and B terminals. If an error is found, the protection function is activated.		
Supply voltage me	easurementAC LINE	Measurement range	80.0 V to 250.0 V		
(EUT)		Resolution	0.01 V		
		Accuracy	$\pm (3\% \text{ of reading} + 1\text{ V})$		
Supply current me	easurementAC LINE	Measurement range	0.1 A to 15.00 A		
(EUT)		Resolution	0.001 A		
		Accuracy	\pm (5 % of reading + 30 mA)		
Power measureme	ent(active nower)	Measurement range	10 W to 1500 W		
1 ower measureme	in(detive power)	Accuracy	$\pm (5\% \text{ of reading} + 8 \text{ W})$ (with the supply voltage at 80 V or more, at a load power factor of 1)		
Voltage measure-	Measurement range	DC	10.00 V to 300.0 V		
ment across the A		RMS	10.00 V to 300.0 V		
and B termi-nals		Peak	15.00 V to 430.0 V		
	Input impedance	1 Cak	Αρριοχ. 40 ΜΩ		
	Accuracy *1		±(3 % of reading + 2 V) (measurement range fixed to AUTO)		
	SELV detection		Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights.		
	SELV detection	Setting range	10.0 V to 99.9 V, OFF		
		Resolution	0.1 V		
Measurement	Rated voltage	Between the A and B terminals	250 V		
terinnar		Between the terminals and chassis	250 V		
	Rated current	una onassis	100 mA		
	Measurement catego	rv	CAT-II		
	Valid terminal displa	<u> </u>	Terminals valid for measurement are indicated on the display.		
	110% terminal	.,	A terminal for supplying the voltage applied to the AC LINE IN inlet.		
Power supply for	Nominal voltage rang	oe.	100 V to 240 V, 50 Hz/60 Hz		
the EUT	Input voltage range (allowable voltage ra	·	85 Vac to 250 Vac		
	Rated output capacit	•	1500 VA		
	Maximum operating	·	15 A (Overcurrent protection is activated at approximately 15.7 A.)		
	Inrush current	Current	70 Apeak max. (within 20 ms)		
	im usii current		10 Apeak max. (within 20 ms)		

^{*1.} If voltage is measured with the A and B terminals open, measurements will be easily affected by induced voltage.

TOS9300 SERIES Electrical Safety Multi-analyzer

Interface (Common)

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC
REMOTE			MINI DIN 9-pin connector. Connect the following option to remotely control the starting and stopping of tests.					
			Remote control box RC01-TOS, RC02-TOS					
				obe HP01A-TOS, HP02		oltage is 4 kVac 5 kVd	lc or less)	
SIGNAL I/O			<u> </u>	or. For the pin arranger				
	Function							and voltage generation
				st status, monitor judgn	ent results, monitor the	e step execution status	s of auto tests, monitor	the activation status of
			protection functions					
	Input specificat	ions		all low-active control. I ninal open is equivalen			resistor.	
		Trial landings	11 V to 15 V	iiiiai opeii is equivaleii	t to applying a night leve	er signar.		
		High-level input voltage						
		Low-level input voltage	0 V to 4 V					
		Low-level input current	-5 mA max.					
		Input time width	5 ms min.					
	Output specifi-	Output method	Open collector output	(4.5 Vdc to 30 Vdc)				
	cations	Output withstanding voltage	30 Vdc					
		Output saturation voltage	Approx. 1.1 V (25 °C, 77 °F)					
		Maximum output current	400 mA(TOTAL)					
STATUS OUT			Output terminal of an option product.					
	Positive termina	al (red)	Outputs +24 V. Use Status Out of CONFIG settings to set the output conditions.					
	Negative termin	nal (black)	+24 V circuit common.					
SCANNER			MINI DIN 8-pin connector. Terminal for the optional TOS9320 high voltage scanner.					
			The maximum number of connections is 4 devices(16 channels).					
USB (host)			Standard type A socket					
			Complies with the USB 2.0 specifications; data rate: 12 Mbps (Full speed)					
Remote control			1	urning on and off the p		test can be remotely	controlled.	
	RS232C		D-sub 9-pin connector (EIA-232D compliant)					
			Baudrate: 9600, 19200, 38400, 57600, 115200 bps					
	USB (device)	Hardware	Standard Type B connector					
			Complies with the USB 2.0 specifications; data rate: 480 Mbps (high speed) Complies with the USBTMC-USB488 device class specifications.					
			1		class specifications.			
	LAN	Hardware	IEEE 802,3 100Base-TX/10Base-T Ethernet					
			Auto-MDIX compliant.					
			IPv4, RJ-45 connector. Complies LXI Class C, Specification 1.5					
		Communication protocol						
Display		Communication protocol	VXI-11, HiSLIP, SCPI-RAW 7-inch LCD. Displays settings, measured values, judgment results, etc.					
Display			/-men LCD. Displays	settings, measured val	ues, juagment results, e	tc.		

Other Functions (Common)

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
Auto test			Auto execution by combining ACW, DCW, IR, and EC. For LC, a combination is possible only using TC, PCC, and Patient.						
Test condition	Setup memory		ns (ACW, DCW, IR, EC			,			
memory	Program(except LC tests)		CW, DCW, IR, EC, PD			in be saved.			
	Program(LC tests only)	Up to 100 program (T	C, PCC, Patient) comb	inations, each containi	ng 100 steps, can be sa	ved.			
	Program memory(except LC tests)	Up to 25 program (AC	CW, DCW, IR, EC, PD)	combinations, each co	ntaining 100 steps, car	be saved.			
	Program memory (LC tests only)	Up to 24 program (To	C, PCC, Patient) combin	ations, each containin	g 100 steps, can be sav	ed.			
Test result memor	у		ntest test result of indep nat to a USB memory de		ests. These are cleared	when the power is tur	ned off. Test results can		
System clock		For recording the cali	bration time and test ti	nes					
	Recordable time	Up to year 2038							
	Calibration period setting		Displays a warning at power-on when the specified period passes. Select whether to activate a protection function or only display a warning in the display area when a warning occurs.						
Measurement disp	blay	Maximum and minin	Maximum and minimum measurements can be displayed.						
	Normal	Displays measurements during a test. Maximum and minimum values are not held.							
	Maximum and minimum value display		Displays the maximum current measurement for withstanding voltage (ACW/DCW) tests, the minimum resistance measurement for insulation resistance (IR) tests, the resistance measurement or voltage measurement for earth continuity (EC) tests.						
Test start method	Double Action	When you press STO	When you press STOP, "READY" is shown for 0.5 seconds. A test starts only when you press START within this period.						
	Momentary	Tests are only execute	Tests are only executed while the START switch is held down.						
Start Long		A test starts only who	A test starts only when the START switch is held down for at least 1 second.						
PASS judgment d	isplay time (Pass Hold)	Set the time to hold the pass judgment result display (0.05 s to 10.00 s) or hold it until STOP is pressed (Infinity).							
			It is possible to set the instrument so that fail judgment results and PROTECTION mode cannot be released from a device connected to the SIGNAL I/O connector or REMOTE connector.						
Key lock		Lock the operation of	the keys to prevent cha	nging the settings or o	verwriting memory or	programs by mistake.			

Electrical Safety Multi-analyzer

Other Functions (Common)

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
Protection functions			If a protection function is activated during a test, the output is shut off and the test is stopped immediately. In an LC test, the power supply to the EUT is stopped, and the A and B terminals are opened. Conditions that cause a protection function to be activated are a follows						
	Interlock	Interlock is activated.							
	Power Supply	There is an error in th	e power supply section						
	Output Error		side of the following ra PD test: ±(10 % of setti ting + 2 A)						
	Over Load	ACW: 550 VA, DCW:	An output power or output current outside of the following range is detected. ACW: 550 VA, DCW: 110 W or 50 mA, IR (7200 V test): 110 W or 25 mA, IR (-1000 V test): 2 mA, EC: 240 VA, LC: AC LINE OUT current at approx. 15.7 A or power at 1600 VA.						
	Over Heat	The internal temperat	The internal temperature of the product is abnormally high.						
	Over Rating		During a withstanding voltage test, an output current is generated for a length of time that exceeds the output time limit During an earth continuity test, an output current is generated for a length of time that exceeds the output time limit.						
	Cal	The preset calibration	The preset calibration period is exceeded.						
	Remote	The REMOTE conne	The REMOTE connector is connected or disconnected.						
	Signal I/O	There is a change in t	he SIGNAL I/O connec	tor's ENABLE signal.					
	Communication	An internal communi	An internal communication error is occurring.						
	Over Range	A value exceeding the	A value exceeding the maximum value of the measurement range is detected.						
	Measure	An error is detected in	An error is detected in the LC test measurement check.						
	Short	A relay operation erro	or is detected in an LC t	est.					
	Earth Fault	When the grounding	mode (GND) is set to G	uard, abnormal currer	t flows from the high v	oltage output of this p	roduct to ground.		
	Scan I/F	While scanning, the i	While scanning, the interface cable is disconnected. Or, the channel-assigned scanner is not detected.						

General Specifications (Common)

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC	
Backup battery	life		3 years (at 25 °C)						
Environment	Installation loca	tion	Indoors, 2000 m or less						
	Spec guara-	Temperature	5 °C to 35 °C (41 °F to 95 °F) (18°C to 28°C for partial discharge tests)						
	nteed range	Humidity	20 %rh to 80 %rh (20%rh to 70%rh for partial discharge tests) (no condensation)						
	Operating rang	Temperature	0 °C to 40 °C (32 °F to 104 °F)						
		Humidity	20 %rh to 80 %rh (no	condensation)					
	Storage range	Temperature	-20 °C to 70 °C (-4 °F	to 158 °F)					
		Humidity	90 %rh or less (no con	densation)					
Power supply	Nominal voltage	range (allowable voltage range)	100 Vac to 120 V, 200	V to 240 V (90 Vac to	132 V, 170 V to 250 V), no switching required	i		
	Power con-	No load(READY state)	100 VA or less						
	sumption	Rated load	800 VA max.						
	Allowable frequ	ency range	47 Hz to 63 Hz						
Insulation resist	ance (between AC	LINE and chassis)	30 MΩ or more (500 V	(dc)					
Withstanding vo	oltage (between AC	LINE and chassis)	1500 Vac, 1 minute, 20 mA or less						
Earth continuity	7		25 Aac, 0.1 Ω or less						
Weight			TOS9300: Approx. 17 kg (37.5 lb.), TOS9301: Approx. 18 kg (39.7 lb.), TOS9301PD: Approx. 22 kg (48.5 lb.),						
			TOS9302: Approx. 20 kg (44.1 lb.), TOS9303: Approx. 21 kg (46.3 lb.), TOS9303LC: Approx. 22 kg (48.5 lb.)						
Accessories			Power cord (1 pc., *length: 2.5 m : The attached power cord varies depending on the shipment destination.)						
			High-voltage test lead (TL31-TOS (1 pair)), SIGNAL I/O plug (1 set), High-voltage warning sticker (1 pc.),						
			Setup Guide (1 copy), CD-ROM (1 disc), Safety Information (1 copy), Heavy object warning label (1 pc., *Not included with the TOS9300)						
						TOS9303,TOS9303LC	only))		
			[TOS9303LC only: Spare fuse (1 pc.), Test leads for leakage current test (2 red, 1 black), Flat probe (1 sheet)]						
Electromagnetic	compatibility *1 *	2	Complies with the requirements of the following directive and standards.						
			EMC Directive 2014/30/EU						
			EN 61326-1 (Class A *3), EN 55011 (Class A *3, Group 1 *4), EN 61000-3-2, EN 61000-3-3						
			Applicable under the following conditions						
			The maximum length of all cabling and wiring connected to the product must be less than						
						Γhe high-voltage test le	ad		
			TL31-TOS is in use.El		**				
Safety *1			Complies with the req						
			Low Voltage Directive 2014/35/EU *2, EN 61010-1 (Class I *5, Pollution Degree 2 *6), EN 61010-2-030						

- *1. Does not apply to specially ordered or modified products.
- *2. Only on models that have CE/UKCA marking on the panel.
- *3. This is a Class A instrument. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.
- *4. This is a Group 1 instrument. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.
- *5. This is a Class I instrument. Be sure to ground this product's protective conductor terminal. The safety of this product is guaranteed only when the product is properly grounded.
- *6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

Electrical Safety Multi-analyzer

High Voltage Scanner

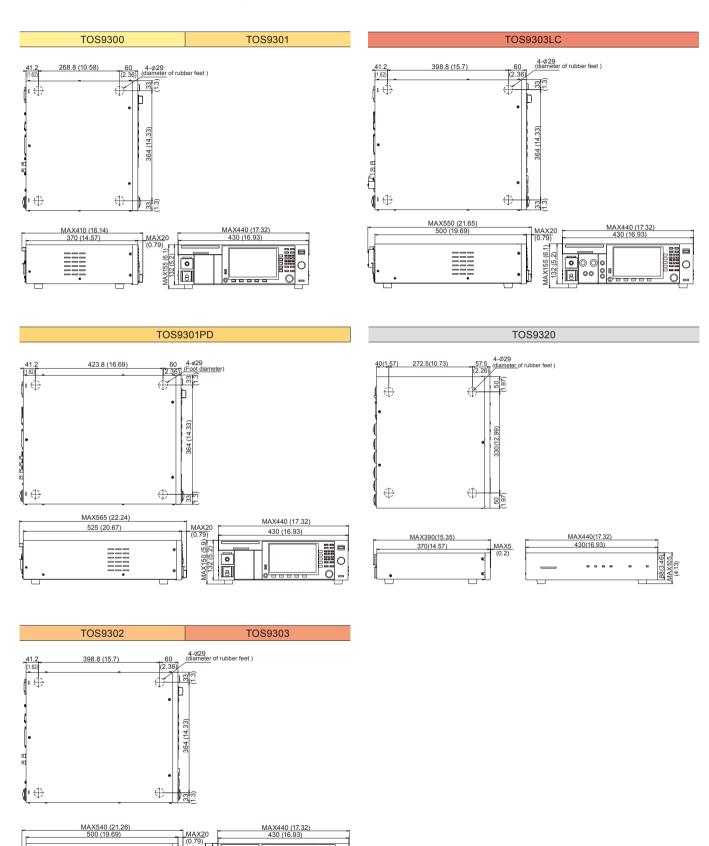
[Basic specifications]

Item		TOS9320		
Maximum operating voltage AC		5 kV		
	DC	7.2 kV		
Number of channels		4 (Each channel can be set to high, low, or open.)		
Maximum connections		4 units		
		Channel numbers are assigned according to the order in which connections are made to the TOS9300 series tester.		
		1st scanner: CH1 to CH4, 2nd scanner: CH5 to CH8, 3rd scanner: CH9 to CH12, 4th scanner: CH13 to CH16		
Contact check function		Available		
Indicators	DANGER	Lights in sync with the TOS9300 series tester		
	CHANNEL	Indicates the setting of each channel with color. Red: High, Green: Low, Orange: Contact being checked, Off: Open		
	EXTERNAL	Lights when external control is on		
	POWER	Lights when the power is on		

[Interface and other functions]

Item			TOS9320
Control switch			EXTERNAL I/O switch for switching the following controls.
			ON: External control through the CONTROLLER INTERFACE OFF: Control from the TOS9300 series tester
CONTROLLER	INTERFACE (external control)	D-sub 25-pin connector.
	Function		Sets each channel to high or low or all channels to open. Outputs the setting of each channel.
	Input		The input signals are all low-active control. The input terminal is pulled up to +12 V by a resistor. Leaving the input terminal open is
			equivalent to applying a high level signal.
		High-level input voltage	11 V to 15 V
		Low-level input voltage	0 V to 4 V
		Low-level input current	-5 mA max.
		Input time width	5 ms min.
	Output	Output method	Open collector output (4.5 Vdc to 30 Vdc)
		Output withstanding voltage	30 Vdc
		Output saturation voltage	Approx. 1.1 V (25°C, 77°F)
		Maximum output current	400 mA (TOTAL)
TOS9300 series	tester interface	-	MINI DIN 8-pin connector. Accuracy guaranteed up to 4 units (16 channels)

[General specifications]


Item			TOS9320				
Environment	Installation location		Indoors, 2000 m or less				
	Spec guaranteed range	Temperature	5°C to 35°C (41°F to 95°F)				
		Humidity	20%rh to 70%rh (no condensation)				
	Operating range	Temperature	0°C to 40°C (32°F to 104°F)				
		Humidity	20%rh to 80%rh (no condensation)				
	Storage range	Temperature	-20°C to 70°C (-4°F to 158°F)				
		Humidity	90%rh or less (no condensation)				
Power supply Nominal voltage range (allowable voltage range))	100 Vac to 240 Vac (90 Vac to 250 Vac)				
	Power consumption		50 VA max.				
	Allowable frequency ran	ge	47 Hz to 63 Hz				
Insulation resist	ance (between AC LINE and	d chassis)	$30 \text{ M}\Omega \text{ or more } (500 \text{ Vdc})$				
Withstanding vo	oltage (between AC LINE ar	nd chassis)	1500 Vac for 1 minute, 20 mA or less				
Earth continuity	7		25 Aac/0.1 Ω or less				
Weight			Approx. 8 kg (17.6 lb)				
Accessories			Power cord (1 pc., length: 2.5 m: The attached power cord varies depending on the shipment destination.) High-voltage test lead [TL:31-TOS] (8 red), Lead for high voltage parallel connection TL:33-TOS (1 pair), Interface cable (1 pc.), CONTROLLER INTERFACE plug (1 set), High-voltage warning sticker (2 pc.), Channel labels (For the panel (1 sheet), For the test leads (1 sheet)), User's manual (1 copy), Safety Information (1 copy)				
Electromagnetic compatibility *1 *2			Complies with the requirements of the following directive and standards. EMC Directive 2014/30/EU, EN 61326-1 (Class A *3), EN 55011 (Class A *3, Group 1 *4), EN 61000-3-2, EN 61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to this product is less than 2.5 m.				
			A shielded cable is used for the connection to the CONTROLLER INTERFACE. The high-voltage test lead TL31-TOS is in use. Electrical discharges are applied only to the EUT.				
Safety *1			Complies with the requirements of the following directive and standards. Low Voltage Directive 2014/35/EU *2, EN 61010-1 (Class I *5, Pollution Degree 2 *6), EN 61010-2-030				

- *1. Does not apply to specially ordered or modified products.
- *2. Only on models that have CE/UKCA marking on the panel.
- *3. This is a Class A instrument. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.
- *4. This is a Group 1 instrument. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.
- *5. This is a Class I instrument. Be sure to ground this product's protective conductor terminal. The safety of this product is guaranteed only when the product is properly grounded.

 *6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution
- *6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

Electrical Safety Multi-analyzer

External Dimensions (Unit:mm(inches))

Hipot Tester/Hipot Tester with Insulation Resistance Test

A new standard for Hipot & Insulation resistance testing Applied to World-Wide input voltage

TOS5301

TOS5302

TOS5300(ACW)
TOS5301(ACW/DCW)
TOS5302(ACW/IR)

TOS5300

New low-cost standard model that provides thorough operability, reliability and safety.

The "TOS5300 Series" is a series of test instruments used in Hipot tests and insulation resistance tests, two of the four tests regarded as necessary for ensuring the safety of electrical products. With an output of 5 kV/100 mA (AC) and 6 kV/10 mA (DC), the series can be used in Hipot & insulation resistance testing of electronic equipment and electronic parts, based on the requirements of IEC, EN, UL, VDE, JIS, and other international safety standards and the Electrical Appliance and Material Safety Law. Also, the test voltage stability is improved with the adoption of a newly developed switching amplifier. Since the output voltage can be kept constant even when the AC line voltage or frequency changes, consistent testing can be performed, even when the power supply environment is in an unstable region. The TOS5300 is also equipped with a number of features that are capable of meeting a variety of test needs. It is a new low-cost standard model that provides thorough operability, reliability and safety.

- The PWM amp system provides highlystable output
- 5 kV/100 mA (500 VA) AC Hipot test
- 6 kV/maximum output 50 W DC Hipot tester (TOS5301)
- 25 V-1000 V (7 steps), 500 V or greater, up to 5.00 G Ω Insulation Resistance test
- High-precision measurement ±1.5% of reading (with voltmeter 500 V or higher, Ammeter 1 mA or higher)
- Rise time(AC/DC) / Fall time(AC) control
- Key lock function and Protection cover for key operation
- Equipped with USB interface

Hipot Tester/Hipot Tester with Insulation Resistance Test

Basic performance

The achievement of AC Hipot testing with a constant stable output! [Input voltage variation: ± 0.3%]

A conventional Hipot tester boosts and outputs the AC line's input voltage through the use of a slide transformer. With this slide transformer system, input voltage fluctuations will affect the output, preventing tests from being performed properly. At times, the application of distortion voltage applied to the EUT may cause a failure of new product (accelerating a deterioration of components). Since the TOS5300 Series equips with a high-efficient PWM amplifier that can output a stable high-voltage without being affected by the variation of AC power line, users can perform "safe", "stable", and highly "reliable" tests with confidence, even in regions with large voltage variations.

Realizing high-precision measurement with high-resolution and high-speed judgement

Equipped with a high-accuracy, high-resolution of True RMS measurement circuit, including a Voltmeter with $\pm 1.5\,\%$ of reading (500 V or greater) / minimum resolution of 1 V, and an Ammeter with $\pm 1.5\,\%$ of reading (1 mA or more) / minimum resolution of 1µA. In addition, it is also equipped with an Auto range function, with achieving a judgment accuracy of $\pm 1.5\,\%$ of reading. The Lower limit judgment accuracy achieves a level of performance equivalent to the Upper limit judgment accuracy that enables to detect for such a poor contact or disconnections of test leads. Moreover, it realizes the fast judgment by the test time of 0.1 second, while reliable testing can be performed, thanks to high-precision, high-resolution, high-speed measurement and the judgment functions.

Supporting the World-wide input voltage

Usable in any country, without changing the input power supply. The instrument not rely on the input power environment. Supplying the stable test voltage with 50/60 Hz frequencies.

Reducing the tact time

Reduction of the tact time leads to improve the productivity. However, it has been an issue that reducing the tact time may cause to worsen the measurement accuracy when the test time is faster than the measuring response speed. The TOS5300 series has been achieved to set the test time from 0.1s.

6 kV/50 WDC Hipot test (Model TOS5301)

Capable to perform DC Hipot test up to 6 kV. (Model TOS5301) Equipped with a stable DC/DC converter with a low-ripple and the load variation of 3 % or less.

nsulation resistance test for 25 V to 1000 V*

The TOS5302 is equipped with an insulation resistance tester. The test voltages can be set from 25 V, 50 V, 100 V, 125 V, 250 V, 500 V and 1000V. And for setting at 500 V and above, it can perform the insulation resistance test up to $5.00~G\Omega$.

*At 500 V and above, measurements up to 5.00 G Ω are possible.

Protection cover prevents physical operation error in the production site

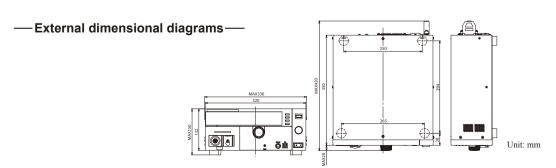
In many cases, workers on electronic equipment production lines and inspection lines are not technical experts. Therefore, it is possible that the operators may change setting conditions and make operation errors. In order to prevent from such cases, the TOS5300 is equipped with a key lock function and a protection cover to disable a physical key operation from the front panel.

New design of output terminal improves safety and functionality

In consideration of safety for the operator and the environment, the output terminal of HIGH-side has been placed in the most distant location from the control area. The free rotation machanisim protects from twisting (or breaking) of the cable. Also, with having the lock function for the LOW terminal on the main unit, the metal plate is no longer attached to the test lead of LOW-side, and it makes to resist damage to the test lead. Because of elimination of these projected components, the TOS5300 can avoid from unexpected accidents such as when the unit travels to other location. And also when the test lead is snagged on something, or unexpected stress is applied on the test lead, the High (High-voltage) test lead is designed to disconnect easily, but the Low (ground) test lead is designed to resist disconnection.

In order to prevent the insertion error, the color coding of the cable are classified to HIGH (red) and LOW (black) , and the plug shape of terminal are also different design.

▲ View with the protection cover removed


Hipot Tester/Hipot Tester with Insulation Resistance Test

Unless specified otherwise, the specifications are for the following settings and conditions.

- The warm-up time is 30 minutes.
 TYP:These are typical values. These values do not guarantee the performance of the product.
- rdng: Indicates the readout value.
- set: Indicates a setting.
- f.s: Indicates full scale.

Hipot Tester

			TOSS	300	TOS5301		TOS5302			
AC output	Output range				0.05 kV to 5.00 kV	r				
section		Accuracy			$\pm (2 \% \text{ of set} + 20 \text{ V}) \text{ when no loa}$	d is connected				
		Setting range		0.00 kV to 5.50 kV						
		Resolution			10 V steps					
	Max. rated output	ıt *1	500 VA (5 kV/100 mA)							
	Max. rated voltag	ge			5 kV					
	Max. rated curre	nt		100) mA (when the output voltage is	0.5 kV or greater)				
	Transformer ratio	ng			500 VA					
	Output voltage w	/aveform *2			Sine					
		Distortion	If the	output voltage is 0.5 k	cV or more: 3 % or less (when no	load or a pure resis	stive load is connected).			
Frequ	Frequency			50 Hz or 60 Hz						
		Accuracy			±0.5 % (excluding during volta	ige rise time)				
	Voltage regulation	on		10 % or le	ess (when changing from maximu	ım rated load to no	load)			
	Input voltage var	riation		±0.3 % (5 kV wl	hen no load is connected; power s	supply voltage: 90	V to 250 V)			
	Short-circuit cur	rent		200 mA	A or more (when the output voltag	ge is 1.0 kV or great	ter)			
	Output method				PWM switching					
OC output	Output range				0.05 kV to 6.00 kV	r				
ection		Accuracy			± (2 % of set + 20 V	/				
					When no load is conne					
		Setting range			0.00 kV to 6.20 kV	/				
		Resolution			10 V STEP					
	Max. rated outpu	ıt *1			50 W (5 kV / 10 mA	1)				
	Max. rated voltag	ge			6 kV					
	Max. rated curre	nt	_	-	10 mA		_			
	Ripple(TYP)	5 kV when no			50 Vp-p					
		load is connected								
	37.14	Max. rated load			100 Vp-p					
	Voltage regulation	on			3% or less (When changing from					
	Short-circuit cur	rent (TYP)			40 mA (when generation 6 k					
	Discharge featur				Forced discharge after test com					
					charge resistance: 125					
Start Volta	ge									
imit Valt.				The voltage at the sta	art of withstanding voltage tests c	an be set to 50% of	f the test voltage.			
mill volta	age				art of withstanding voltage tests c er limit can be set . AC: 0.00 kV					
	age tage monitor featur	re	If	The test voltage uppe		to 5.50 kV, DC: 0.0	00 kV to 6.20 kV			
		re	If	The test voltage upper	er limit can be set . AC: 0.00 kV	to 5.50 kV, DC: 0.0 s lower than the spe	00 kV to 6.20 kV ecified value - 350 V,			
Output volt		re Scale	If	The test voltage upper	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is	to 5.50 kV, DC: 0.0 s lower than the spe	00 kV to 6.20 kV ecified value - 350 V,			
Output volt	tage monitor featur		If	The test voltage upper	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is at is turned off, and protective fea	to 5.50 kV, DC: 0.0 s lower than the spe	00 kV to 6.20 kV ecified value - 350 V,			
Output volt	tage monitor featur	Scale	If	The test voltage upper	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is ut is turned off, and protective fea 6 kV AC / DC f.s	to 5.50 kV, DC: 0.0 to 5.50 kV, DC: 0.0 s lower than the speatures are activated	00 kV to 6.20 kV ecified value - 350 V,			
Output volt	tage monitor featur	Scale Accuracy	If	The test voltage upper	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is at is turned off, and protective fea 6 kV AC / DC f.s ± 5 % f.s	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale	00 kV to 6.20 kV ecified value - 350 V,			
Output volt	Analog	Scale Accuracy Indication	If	The test voltage upper	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is ut is turned off, and protective fea 6 kV AC / DC f.s ± 5 % f.s Average value response/rm	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale	00 kV to 6.20 kV ecified value - 350 V,			
Output volt	Analog	Scale Accuracy Indication Measurement range	If	The test voltage upportune to the test voltage exceeds output voltag	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is ut is turned off, and protective fea 6 kV AC / DC f.s ± 5 % f.s Average value response/rn 0.000 kV to 6.500 kV AC	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC	00 kV to 6.20 kV ecified value - 350 V, i.			
Output volt	Analog	Scale Accuracy Indication Measurement range Display	If	The test voltage uppo output voltage exceeds output V < 500 V:	er limit can be set . AC: 0.00 kV s the specified value $+350 \text{ V}$ or is at is turned off, and protective feat 6 kV AC / DC f.s $\pm 5 \%$ f.s Average value response/rm 0.000 kV to 6.500 kV AC $\square \square \square$	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of re	00 kV to 6.20 kV ecified value - 350 V, d.			
Output volt	Analog	Scale Accuracy Indication Measurement range Display Accuracy		The test voltage uppo output voltage exceeds output V < 500 V:	er limit can be set . AC: 0.00 kV s the specified value + 350 V or is at is turned off, and protective fea 6 kV AC / DC f.s ± 5 % f.s Average value response/rn 0.000 kV to 6.500 kV AC	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of rosts display switchable	00 kV to 6.20 kV ecified value - 350 V, d.			
Output volt	Analog	Scale Accuracy Indication Measurement range Display Accuracy Response *3		The test voltage upportung to the voltage exceeds output voltage exceeds vo	er limit can be set . AC: 0.00 kV s the specified value $+350 \text{ V}$ or is at is turned off, and protective feat 6 kV AC / DC f.s $\pm 5 \%$ f.s Average value response/rm 0.000 kV to 6.500 kV AC $\square \square \square$	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of re as display switchable til the PASS or FAI	00 kV to 6.20 kV ecified value - 350 V, d.			
Limit Volta Output volt Voltmeter Ammeter	Analog Digital	Scale Accuracy Indication Measurement range Display Accuracy Response *3 Hold feature Measurement range	Afte	V < 500 V: True 1 r a test is finished, the	er limit can be set . AC: 0.00 kV st the specified value + 350 V or is ut is turned off, and protective fea 6 kV AC / DC f.s ± 5 % f.s Average value response/rm 0.000 kV to 6.500 kV AC □ □□□ kV □ ±(1.5 % of reading + 20 V); V ≥ rms, Average value response / rm measured voltage is retained unt AC: 0.00 mA to 110 m DC: 0.00 mA to 11 m	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of re as display switchable til the PASS or FAI mA nA	eading le L judgment is cleared. AC: 0.00 mA to 110 mA			
Output volt	Analog Digital	Scale Accuracy Indication Measurement range Display Accuracy Response *3 Hold feature	Afte AC: 0.00 mA	The test voltage upportung to the voltage exceeds output voltage exceeds vo	er limit can be set . AC: 0.00 kV is the specified value + 350 V or is at is turned off, and protective feat 6 kV AC / DC f.s ± 5 % f.s Average value response/rm 0.000 kV to 6.500 kV AC □ □□□□ kV : ±(1.5 % of reading + 20 V); V ≥ rms, Average value response / rm measured voltage is retained unt AC: 0.00 mA to 110 n	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of re as display switchable til the PASS or FAI	eading le L judgment is cleared. AC: 0.00 mA to 110 mA			
Output volt	Analog Digital	Scale Accuracy Indication Measurement range Display Accuracy Response *3 Hold feature Measurement range	Afte AC: 0.00 mA	V < 500 V: True to a test is finished, the to 110 mA	er limit can be set . AC: 0.00 kV is the specified value + 350 V or is at is turned off, and protective fea 6 kV AC / DC f.s $\pm 5 \% \text{ f.s}$ Average value response/rn $0.000 \text{ kV to } 6.500 \text{ kV AC}$ $\Box \square \Box \Box \text{ kV}$ $\vdots \pm (1.5 \% \text{ of reading } + 20 \text{ V}); \text{ V} \geq \text{rms, Average value response / rm}$ measured voltage is retained unt $AC: 0.00 \text{ mA to } 110 \text{ m}$ $DC: 0.00 \text{ mA to } 11 \text{ m}$ $1 \text{ mA} \leq \text{i} < 10 \text{ mA}$ $\Box . \Box \Box \Box \text{ mA}$	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of re us display switchable til the PASS or FAI nA nA 10 mA ≤ i < 100 m	eading le Li judgment is cleared. AC: 0.00 mA to 110 mA			
Output volt	Analog Digital	Scale Accuracy Indication Measurement range Display Accuracy Response *3 Hold feature Measurement range	Afte AC: 0.00 mA	V < 500 V: True tr a test is finished, the to 110 mA i < 1 mA 1.00 mA ≤	er limit can be set . AC: 0.00 kV st the specified value + 350 V or is ut is turned off, and protective fea 6 kV AC / DC f.s ± 5 % f.s Average value response/rm 0.000 kV to 6.500 kV AC	to 5.50 kV, DC: 0.0 s lower than the spe atures are activated ms scale C / DC 500 V: ±1.5 % of re us display switchable til the PASS or FAI nA 10 mA ≤ i < 100 m □□ . □□ mA	00 kV to 6.20 kV ecified value - 350 V, d. eading le IL judgment is cleared. AC: 0.00 mA to 110 mA AA 100 mA ≤ i □□□□□□□ 30 μA)			

Hipot Tester/Hipot Tester with Insulation Resistance Test

Hipot Tester

					TOS5300	TOS5301		TOS53	02				
Judgment feature	Judgment me judgment ope			Judgment	Judgment method		Display	Buzz- er	SIGNAL I/O				
								UPPER FAIL	is turned off, and an UPPER the ment occurs. During the voltage	r equal to the upper limit is detected, the output output is turned off, and an UPPER FAIL judg- rise time (Rise Time) of DC hipot tests, an UP- if there is a problem with the voltage rise ratio.	FAIL LED lights OVER is displayed on the screen	ON	Generates a U-FAIL signal
				LOWER FAIL	is turned off, and a LOWER FA	equal to the lower limit is detected, the output IIL judgment occurs. This judgment is not per- (Rise Time) of all tests and during the voltage tests.	FAIL LED lights UNDER is displayed on the screen	ON	Generates a L-FAIL signal				
				PASS	If the specified time elapses with a PASS judgment occurs.	PASS LED lights	ON	Generates a PASS signal					
			• Tl	If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a STOP signal. The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a STOP signal. The FAIL and PASS buzzer volume levels can be changed. For PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 seconds. Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds.									
	Upper limit s	etting		AC:	0.01 mA to 110 mA	AC: 0.01 mA to 110 mA DC: 0.01 mA to 11 mA	AC: 0.0	01 mA t	o 110 mA				
	Lower limit s	imit setting AC: 0.01 mA to 110 mA / OFF AC: 0.01 mA to 110 mA / OFF DC: 0.01 mA to 11 mA / OFF					AC: 0.01 mA to 110 mA / OFF						
	Judgment acc	curacy *4		$1.00 \text{ mA} \le i$: $\pm (1.5 \% \text{ of set})$, $i < 1.00 \text{ mA}$: $\pm (1.5 \% \text{ of set} + 30 \mu\text{A})$									
	Current detec	ction method		Calculates the current's true rms value and compares this value with the reference value									
	Calibration		Calibrated with the rms of a sine wave using a pure resistive load										
Time	Voltage rise t	ime				0.1 s to 10.0 s							
		Resolution				0.1 s							
	Voltage fall ti	ime			0.1 s	/ OFF (only enabled when a PASS judgment							
	Test time					0.1 s to 999 s, can be turned off (TIMER OF	F)						
		Resolution		0.1 s to 99.9 s: 0.1 s. 100 s to 999 s: 1 s.									
	Accuracy			±(100 ppm + 20 ms) excluding Fall Time Excluding AC: Fall Time Add DC: Rise Time Add ±50 ms at 1 kV or more, Add ±100 ms at less than 1 kV.									

*1. Regarding the output time limits:

Taking size, weight, and cost into consideration, the heat dissipation capability of the voltage generator that is used for hipot tests has been designed to be one half that of the rated output. Use the TOS5300 Series within the following limits. If you use the product in a manner that exceeds these limits, the output section may overheat, and the internal protection circuits may be activated. If this happens, stop testing, and wait until the TOS5300 Series returns to its normal temperature.

Ambient temperature	Upper limit		Pause time	Output time	
	AC	$50~mA \le i \le 110~mA$	Greater than or equal to the output time	30 min. max.	
t < 40 °C	AC	$i \le 50 \text{ mA}$	Not necessary	Continuous output possible	
1 ≤ 40 €	DC	$5~mA \le i \le 11~mA$	Greater than or equal to the output time	1 min. max.	
	DC	$i \le 5 \text{ mA}$	Greater than or equal to the wait time (WAIT TIME)	Continuous output possible	

(Output time = voltage rise time + test time + voltage fall time)

*2. Regarding the test voltage waveform:

Waveform distortions may occur if an DUT whose capacitance is dependent on voltage (for example, an DUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

- *3. For both True rms and Mean-value response, 50 ms or above response time is required to satisfy the measurement accuracy.
- *4. Regarding ammeter and judgment accuracy:

During AC hipot tests, current also flows in the stray capacitance of items such as the measurement leads and jigs. This current that flows in the stray capacitances is added to the current that flows in the DUT, and the sum of these currents is measured. Especially if you want to perform judgments with high sensitivity and accuracy, it is necessary to consider methods to limit the current that flows in these stray capacitances, such as by adding upper and lower limits.

Output voltage	1 kV	2 kV	3 kV	4 kV	5 kV
When using 350 mm long test leads that are suspended in air (TYP)	2 μΑ	4 μΑ	6 μΑ	8 μΑ	10 μΑ
When using the accessory, high test lead TL31-TOS (TYP)	16 μΑ	32 μΑ	48 μΑ	64 μΑ	80 μΑ

TOS5300 SERIES Hipot Tester/Hipot Tester with Insulation Resistance Test

Insulation Resistance Tester

						TOS	55302					
Output	Output voltag				25 V, 50 V	, 100 V, 125 V, 250		OC (negative)				
section	36	Accuracy	-0 %, +5 %									
	Max. rated loa			1 W (-1000 V DC / 1 mA)								
	Max. rated cu	rrent 1000 V when no		1 mA								
	Ripple	load is connected				2 Vp-	o or less					
		Max. rated load				10 Vp-	p or less					
	Voltage regula	ation			1 % or less (v	when changing from	n maximum rated	load to no load)				
	Short-circuit	current				12 m	or less					
	Discharge fea	ture						ance: approx. 25 kΩ)				
	Limit voltage				0 11			5 V, 250 V, 500 V, 1000				
	Output voltag	e monitor feature		If o		ds "10 % of set + 10 turned off, and pro		in "-(10 % of set + 10 V)	,"			
Voltmeter	neter Analog Scale				output is		C/DC f.s	e activated.				
· onmeter	- Indiog	Accuracy					% f.s					
		Indication				Average value re	esponse/rms scale					
	Digital	Measurement range					-1200 V					
		Display		Measured vol	tage	V < 100 V	100 V ≤ V <	1000 V 100	00 V ≤ V			
				Display	itage	□□ V	000 V					
		A		Display								
Resistance	Measurement	Accuracy			0.02	$\pm (1\% \text{ of re})$ $M\Omega \le R \le 25 \text{ M}\Omega$	ading + 1 V)	digits)				
neter	range / measurement	25 V			0.03		$M\Omega$ / ±5 % of rdn	g				
	accuracy				0.05	$M\Omega \le R \le 50~M\Omega$						
	*1 *2	50 V				_	$M\Omega/\pm 5\%$ of rdn	~				
						$\frac{250 \text{ M}\Omega < R \le 500}{0.100 \text{ M}\Omega \le R \le 10}$						
		100 V				$100 \text{ M}\Omega < R \le 500$		0				
				$500 \text{ M}\Omega < R \le 300 \text{ M}\Omega / \pm 5\% \text{ of rdng}$ $500 \text{ M}\Omega < R \le 1 \text{ G}\Omega / \pm 10\% \text{ of rdng}$								
				$0.125 \text{ M}\Omega \le R \le 125 \text{ M}\Omega / \pm 2 \% \text{ of rdng}$								
		125 V		$125 \text{ M}\Omega < R \le 625 \text{ M}\Omega / \pm 5 \% \text{ of rdng}$ $625 \text{ M}\Omega < R \le 1.25 \text{ G}\Omega / \pm 10 \% \text{ of rdng}$								
				$0.250 \text{ M}\Omega \le R \le 1.25 \text{ G}\Omega / \pm 10 \text{ with diag}$ $0.250 \text{ M}\Omega \le R \le 250 \text{ M}\Omega / \pm 2 \text{ wo friding}$								
		250 V	$250~\mathrm{M}\Omega$ < R $\leq 1.25~\mathrm{G}\Omega$ / $\pm 5~\mathrm{\%}$ of rdng									
				$1.25 \mathrm{G}\Omega < \mathrm{R} \le 2.5 \mathrm{G}\Omega / \pm 10 \%$ of rdng								
		500 17		$0.50 \text{ M}\Omega \le R \le 500 \text{ M}\Omega / \pm 2 \% \text{ of rdng}$ $500 \text{ M}\Omega \le R \le 2.5 \text{ G}\Omega / \pm 5 \% \text{ of rdng}$								
		500 V		2.5 $G\Omega < R \le 2.5 \ G\Omega / \pm 10 \%$ of rdng								
		1000 17	$1 \ M\Omega \le R < 1 \ G\Omega \ / \ \pm 2 \ \% \ of \ rdng$									
		1000 V				$1 \text{ G}\Omega \leq R \leq 5 \text{ G}$	Ω / ±5 % of rdng					
	Display *2		25.1-0	D < D < 1.00 MO	1.00 MO < D < 10	0 M O 10 0 M O <	R < 100 MΩ 10	0.0 MO < P < 1.00 CO	1.00.00) < D < 0.00 CO		
			23 KS	$\Omega \le R < 1.00 \text{ M}\Omega$	$1.00 \text{ M}\Omega \leq R < 10.$		□ MΩ	$\frac{0.0 \text{ M}\Omega \leq R < 1.00 \text{ G}\Omega}{\Box\Box\Box\Box\text{ M}\Omega}$		$\Omega \le R \le 9.99 \text{ G}\Omega$		
				UUU K\$2	□ . □□ IVI\$2		□ IVIS2	UUU IVI122	L	1. UU G12		
Hold featur	e			After a	test is finished, the	measured resistanc	e is retained until t	he PASS judgment is cl	eared.			
Current det	ection response	speed			Can be	switched between	three levels: Fast, !	Mid, Slow				
ludgment		nod and judgment	Judgm	ent Judgment met	hod			Display	Buzzer	SIGNAL I/O		
eature	operation		Judgiii		that is greater than	or agual to the uppe	r limit is detected	1 /	Buzzei	Generates		
			UPPER		irned off, and an UF			OVER is displayed	ON	a U-FAIL		
			FAIL		ot performed during			on the screen		signal		
			LOWE		that is less than or e					Generates		
			FAIL	a problem occi	urs during the voltag la LOWER FAIL ju		ime), the output is	UNDER is displayed on the screen	ON	a L-FAIL		
				turned off, and	i a LOWER FAIL Ju	idgment occurs.		on the screen	-	signal		
			PASS		l time elapses witho	ut any problems, th	e output is turned	PASS LED lights	ON	Generates		
				off, and a PAS	S judgment occurs.					a PASS signa		
			• If PASS I	HOLD is enabled th	e PASS signal is ger	nerated continuousl	v until the TOS530	00 Series receives a STC)P signal			
								35300 Series receives a S		al.		
				and PASS buzzer v								
				• For PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 seconds. Even if PASS HOLD is enabled, the buzzer off after 0.2 seconds.								
	Upper limit se	etting range	on anter	0.2 Secolius.		30 kO t	ο 5.00 GΩ					
	Lower limit so						ο 5.00 GΩ					
	Judgment accu						ccuracy + 2 digits					
	(the same for U					ndensation). No inte	erference caused b	y wobbly test leads or o	ther probl	ems.		
	LOWER)							seconds is necessary.				
								at least 0.3 seconds is ne at least 0.5 seconds is no				
	Voltage rise ti	me		ii tiic curi	от истесной техрог		s (TYP)	at reast 0.3 Seconds is fit	ccssai y.			
Time						10 111;		OFF)				
Time	Test Time				0.1	s to 999 s. can be t	urned off (TIMER	OFF)				
Time		Resolution			0.1	s to 999 s, can be t 0.1 s to 99.9 s: 0.1						

^{*1.} Humidity: 20 %rh to 70 %rh (no condensation). No bends in the test leads. *2. R = measured insulation resistance

Hipot Tester/Hipot Tester with Insulation Resistance Test

Other Features / Interfaces

		TOS5300	TOS5301	TOS5302				
Double a	ction feature	Tests can only be started by pressing and re	eleasing STOP and then pressing START with	in 0.5 seconds of releasing the STOP switch.				
Length o	f time to maintain a PASS judgment result	You can set the length of time	You can set the length of time to maintain a PASS judgment: 50 ms, 100 ms, 200 ms, 1 s, 2 s,5 s, or HOLD.					
Momenta	ary feature	Tests are only executed while the START switch is held down.						
Fail mod	e feature	This feature enables you to prevent remo	tely transmitted stop signals from clearing FA	AIL judgments and PROTECTION modes.				
Timer fea	nture	This f	eature finishes tests when the specified time e	lapses.				
Output ve	oltage monitor feature		ge exceeds "setting + 350 V" or is lower than " tches to PROTECTION mode, output is turned					
Memory		Up to	three sets of test conditions can be saved to m	emory.				
Key lock		Le	ocks panel key operations (settings and chang	es).				
Protectiv	e features	Under any of the following conditions, t	he TOS5300 Series switches to the PROTECT	TION state, immediately turns output off,				
		and	stops testing. A message is displayed on the so	creen.				
	Interlock Protection		An interlock signal has been detected.					
	Power Supply Protection		An error was detected in the power supply.					
	Volt Error Protection	While monitoring the output voltage, a voltage outside of the rated limits was detected. AC or DC hipot tests: $\pm 350 \text{ V}$ Insulation resistance test: $\pm (10 \% \text{ of set} + 10 \text{ V})$						
	Over Load Protection	During a withstanding voltage test, a value that is greater than or equal to the output limit power was specified. AC hipot test: 550 VA. DC hipot test: 55 VA.						
	Over Heat Protection	The internal temperature of the TOS5300 Series became too high.						
	Over Rating Protection	During a withstanding voltage test, the	he output current was generated for a length o	f time that exceeds the regulated time.				
	Calibration Protection		The specified calibration period has elapsed.					
	Remote Protection	A connection to or di	sconnection from the front-panel REMOTE co	onnector was detected.				
	SIGNAL I/O Protection	The rear-par	nel SIGNAL I/O connector's ENABLE signal	has changed.				
	USB Protection	The USB connector has been discon	nected while the TOS5300 Series was being of	controlled through the USB interface.				
System c	lock	Set in the	following format: year/month/day hour/minut	tes/seconds.				
	Calibration date		Set when the TOS5300 Series is calibrated.					
	Calibration period setting	Sets	the period before the next calibration is neces	ssary.				
	Notification of when the calibration		that is performed when the specified calibrat					
	period elapses	When the TOS5300 Series turns or	n, it can display a notification or switch to the	protection mode and disable testing.				
Interface	s USB		USB Specification 2.0					
	REMOTE		Front-panel 9-pin MINI DIN connector.					
		By connecting an optional device	ee to this connector, you can control the starting	ng and stopping of tests remotely.				
	SIGNAL I/O		Rear-panel D-sub 25-pin connector					

General Specifications

			TOS5300	TOS5301	TOS5302				
Display				VFD: 256 × 64 dots + 4 status indicators					
Backup b	attery life			3 years (at 25 °C or 77 °F)					
Environ-	Installation loca	ation		Indoors, at a height of up to 2000 m					
ment	Spec guaran-	Temperature		5 °C to 35 °C (41 °F to 95 °F)					
	teed range	Humidity		20 %rh to 80 %rh (no condensation)					
	Operating	Temperature		0 °C to 40 °C (32 °F to 104 °F)					
	range	Humidity		20 %rh to 80 %rh (no condensation)					
	Storage range	Temperature		-20 °C to 70 °C (-4 °F to 158 °F)					
		Humidity		90 %rh or less (no condensation)					
Power	Nominal voltage r	ange (allowable voltage range)		100 VAC to 240 VAC (90 VAC to 250 VAC)					
supply		n no load is connected (READY)	100 VA or less						
	sumptio Whe	en rated load isconnected	800 VA max.						
	Allowable frequ	iency range	47 Hz to 63 Hz						
Insulation	resistance (betwee	en AC LINE and the chassis)	30 MΩ or more (500 VDC)						
Withstand	ling voltage (betwe	en AC LINE and the chassis)	1400 Vac, 2 seconds (Routine test) / 1500 Vac, 1 minutes (Type test)						
Earth cor	ntinuity		25 AAC, 0.1 Ω or less						
Safety *1			Complies with the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU*2, EN 61010-1 (Class 1*5, Pollution degree 2*6)						
Electromagnetic compatibility (EMC) *1,*2			EMC Directive 2014/30/EU, EN 613 The maximum length of all cabling and win	th the requirements of the following directive 26-1 (Class A*3), EN 55011 (Class A*3, Grou Applicable under the following conditions ring connected to the TOS5300 is less than 2.5 tt lead TL31-TOS is being used. Electrical dis	p 1*4), EN 61000-3-2, EN 61000-3-3 5 m. Shielded cables are being used when us-				
Dimensio	ons		320[12.60 inch] (330[12.99 inch])	W × 132[5.20 inch] (150[5.19 inch]) H × 350[1	3.78 inch] (420[16.54 inch]) D mm				
Weight			Approx. 14 kg (Approx. 30.9 lbs.)	Approx. 15 kg (Approx. 33.1 lbs.)	Approx. 14 kg (Approx. 30.9 lbs.)				
Accessor	ies			ead (TL31-TOS): 1 set (1 red wire and 1 black bly type/ High-voltage warning sticker: 1 pc./					

- *1. Does not apply to specially ordered or modified TOS5300s.
- *2. Limited to products that have the CE mark/UKCA mark on their panels. Not be in compliance with EMC limits unless the ferrite core is attached on the cable for connection of J1 connector.
- *3. This is a Class A equipment. The TOS5300 is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.
- *4. This is a Group 1 equipment. The TOS5300 does not generate and/or use intentionally radio-frequency energy, in the from of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.
- *5. This is a Class I equipment. Be sure to ground the TOS5300's protective conductor terminal. The safety of this product is only guaranteed when the product is properly grounded.
- *6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

AC Hipot Tester

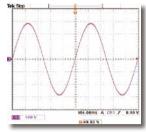
An ideal AC Hipot Tester with low cost of ownership, built on more than 50 years of experience in market

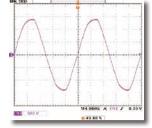
TOS5200(ACW)

The low cost of "New standard AC Hipot tester" with high-usability, reliability, and safety aspect.

TOS5200 is designed for AC Hipot Test with 500 VA capacity and 200 mA short circuit current output capability. Equipped with the PWM amplifier, the TOS5200 can provide a stable & reliable output without being affected by AC power line. Thus, it is a perfect solution for electronic equipment or devices complied to IEC, EN, UL, VDE and JIS etc. requirement. The TOS5200 covers most of features of which our upper class model of the AC Hipot Test, it achieves the superb cost / performance ratio for those who need 200 VA or 500 VA capacity, or both. Also, it equips the Interlock function together with other safety features, the operator can carry out the test with higher current value in safe.

- Highly-stable output is realized with the PWM switching amplifier system
- 5 kV / 100 mA (500 VA) AC Hipot test
- High-precision measurement of "±1.5 % of reading" (with the Voltmeter 500 V or higher, the Ammeter 1 mA or higher)
- Rise time / Fall time control function
- Supporting the World-wide input voltage
- Reducing the tact time
- The Keylock function & the Protection cover for the front panel operation
- Equipped with USB / RS232C interface


AC Hipot Tester


Basic performance

Highly stable output is realized with PWM Switching Amplifier!

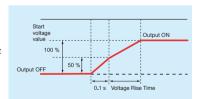
Equipped with the PWM switching amplifier system, the TOS5200 realizes highly stable output not affected by input form AC line.A conventional Hipot Tester boosts and outputs the AC line's input voltage using a slide transformer system and which, the input voltage fluctuations will affect the output, preventing test from being performed properly. Since the TOS5200 equips with a highefficient PWM amplifier that can output a stable high-voltage without being affected by the variation of AC power line, users can perform "safe", "stable", and highly "reliable" tests with confidence, even in regions with large voltage variations.

The output waveform is essential factor in Hipot (Withstanding oltage) testing!

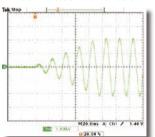
▲ AC output waveform of TOS5200

▲ AC output waveform of the slide transformer system

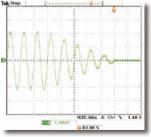
Capable of Test Time setting from 0.1s, which enables to reduce the tact time!


The TOS5200 can set the test time from 0.1 sec without sacrificing measurement accuracy. Reduction of the tact time leads to improve the productivity, so it has been an issue that reducing the tact time may cause to worsen the measurement accuracy when the test time is faster than measurement respond speed.

Rise time / Fall time control function


The rise time control function is to prevent the excessive stress that is being applied to the EUT (test object). The Hipot (Withstanding voltage) test is conducted to verify the safety performance of the EUT and which test voltage for Hipot (Withstanding voltage) test is applied approximately five to ten times greater than the voltage that handles by the EUT. If a high voltage is applied rapidly with no rise time, the transitional large voltage (current) will be occurred, and it may cause a damage to the EUT. For this reason, safety standards stipulate the procedure of Hipot (Withstanding voltage) test, and the test voltage must be gradually increased to the specified voltage when the test is performed. The rise time control function adopted in the TOS5200 can set the voltage rise time from 0.1s to 10.0s (at a resolution of 0.1s) and also it is capable to set the 50% (fixed) of the applied test voltage. In addition, the fall time control function enables to decrease the

test voltage gradually after the completion of a PASS judgement. The voltage fall time is fixed at 0.1s (OFF is also selectable).



 \blacktriangle Start voltage can be set at 50 % of the test voltage

Rise Time control function

▲ Rise time control waveform (example)

▲ Fall time control waveform (example)

The Rise time control function enables you to increases the test voltage gradually to reach the setting voltage while the AC Hipot (Withstanding voltage) test is conducted. The voltage rise time can be set from 0.1s to 10.0s at a resolution of 0.1s.

The Fall time control function enables you to decrease the test voltage gradually when the PASS judgment is made at the AC Hipot (Withstanding voltage) test. The voltage fall time is fixed at 0.1s. (OFF is also selectable).

High Precision, High Resolution, Realizing high-speed judgment

High-precision measurement $\pm 1.5\%$ of reading (with voltmeter 500 V or higher, Ammeter 1 mA or higher) The auto-range function achieves the equivalent specifications of the judgment accuracy for the upper and lower fail, and it makes effective to detect the contact failure or the disconnected status of the test lead. Moreover, the test time as fast as 0.1s realize the high-speed judgment. It assures to perform testing with the high-precision, high-resolution, high-speed-measurement, and the judgment function.

Improved the setting resolution of the leak current by 0.01 mA!

TOS5200 can set the current limit from 0.01 mA to 110 mA.

- Enables to clarify the actual value of device under test (DUT)
- The setting resolution of the lower limit setting has been improved from the previous model, it enables to defect the failure more accurately.

AC Hipot Tester

Unless specified otherwise, the specifications are for the following settings and conditions.

- . The warm-up time is 30 minutes
- TYP: These are typical values. These values do not guarantee the performance of the product.
- rdng: Indicates the readout value. set: Indicates a setting. f.s: Indicates full scale.

Withstanding voltage tester

100	la	<u>.</u>	To.	05177 51	20177								
AC Output section	Output range		_	05 kV to 5.0									
		Accuracy				when no load is connected	1						
		Operating range	_	00 kV to 5.5	50 kV								
		Resolution	_) V steps									
	Max. rated out	*	_	00 VA (5 kV	7/100 mA	1)							
	Max. rated voltage			kV									
	Max. rated cur	rent	10	00 mA (whe	n the ou	tput voltage is 0.5 kV or g	reater)						
	Transformer ra	nting	50	00 VA									
	Output voltage	waveform *2	Si	ine									
		Distortion	If	f the output	voltage	is 0.5 kV or more: 3 % or	less (when no load or a pur	e resistive	load is connected	ed)			
	Crest factor		√2	2 ± 3 % less	than (w	hen the output voltage is 8	800 V or greater, no load)						
	Frequency	50	0 Hz or 60 H	łz									
		Accuracy	±	0.5 % (excl	uding du	ring voltage rise time)							
	Voltage regula	tion	10	% or less (when ch	anging from maximum ra	ited load to no load)						
	Input voltage v		_				er supply voltage: 90 V to 2	50 V)					
	Short-circuit c		_			en the output voltage is 1.0		/					
	Output method		_	WM switch		in the output voltage is 1.0	, it of greater)						
Start voltage	output method	•	_			rt of withstanding voltage	tests can be set to 50 % of	the test vo	ltage				
Limit voltage						r limit can be set . AC: 0		the test ve	ntuge.				
Output voltage moni	tor footure						350 V or is lower than the	o specified	Lyalua 250 V	output	ic turnod	Loff and pre	otooti
Output voltage mom	tor reature			atures are a			330 v of is lower than the	e specified	i value - 550 v,	output	is turnet	orr, and pro	otecti
Voltmeter	Digital	Measurement range	0.	000 kV to 6	.500 kV	AC							
		Display		. 🗆 🗆 🗎 kV									
		Accuracy	V	< 500 V: ±	(1.5 % o	f reading + 20 V), $V \ge 50$	00 V: ±1.5 % of reading						
		Response *3	Tr	rue rms, Av	erage va	lue response/rms display	switchable						
		Hold feature	A	fter a test is	finished	d, the measured voltage is	retained until the PASS or	FAIL judg	gment is cleared				
Ammeter	Digital	Measurement range	0.	00 mA to 1	10 mA								
		Display	i =	= measured	current	i < 1 mA	1 mA ≤ i < 10 mA	10 m A	∠; ∠ 100 m A		100 mA :	2:	
		-1 -7				□ . □□□ mA	□ . □□□ mA		≤ i < 100 mA . □□ mA		100 mA ;		
									. ⊔⊔ mA		υυυ . υ г	nA	
		Accuracy *4	1.0	00 mA ≤ i:	± (1.5 %	of reading), i \leq 1.00 mA:	± (1.5 % of reading + 30 μ.	A)					
		Response *3	Tı	rue rms, Av	erage va	lue response/rms display	switchable						
		Hold feature	A	fter a test is	finished	d, the measured current va	alue is retained until the PA	SS judgm	ent is cleared.				
Judgment feature	Judgment metl			Judgment	Indama	ent method			Display		Buzzer	SIGNAL I	/0
	judgment oper	ation			_				FAIL LED light	·e·	Duzzei		70
				UPPER FAIL	If a cur output	rent that is greater than or or is turned off, and an UPPER	equal to the upper limit is de FAIL judgment occurs.	tected, the	UPPER is displa		ON	Generates a U-FAIL si	ignal
					If a cur	rent that is less than or equa	il to the lower limit is detecte	d the out-					
				LOWER			AIL judgment occurs. This ju		FAIL LED light LOWER is disp	S;	ON	Generates	
				FAIL	not per	formed during voltage rise t	time (Rise Time) of all tests a	and during	on the screen	iayeu	ON	a U-FAIL s	ignal
							AC withstanding voltage test			. 41			
				PASS		specified time elapses without a PASS judgment occurs.	out any problems, the output	is turned	PASS LED light played on the sc	ts; dis-	ON	Generates a PASS sign	nal
				ICDA CC HC				411 db - TO	1 1 2		CTOD -		
							generated continuously ur are generated continuously						
						buzzer volume levels car		y diffir the	1 Obbosio Berres	, 100011	c 3 u 51 0	i signui.	
			• I	For PASS ju	idgment	s, the length of time that t	he buzzer sounds for is fixe	ed to 0.2 se	econds.				
			1	Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds.									
	Upper limit se	tting	0.01 mA to 110 mA										
	Lower limit se	tting	0.	01 mA to 11	10 mA /	OFF							
	Judgment accu	racy *4	1.0	$1.00 \text{ mA} \le i$: $\pm (1.5 \% \text{ of set})$, $i < 1.00 \text{ mA}$: $\pm (1.5 \% \text{ of set} + 30 \text{ µA})$									
	Current detect	ion method	Ca	alculates th	e curren	t's true rms value and con	pares this value with the r	eference v	alue				
	Calibration		_			ns of a sine wave using a	*						
Time	Voltage rise tii	ne		1 s to 10.0 s		. 5							
	- sampe rise th	Resolution	_	1 s									
	Voltage fall tir		- 1		nly enak	oled when a PASS judgme	nt occurs)						
	Test Time		_			turned off (TIMER OFF)	000413)						
	105t THIE	Pagalation	-			100 s to 999 s: 1 s							
		Resolution	_										
	Accuracy				20 `	excluding Fall Time							

Regarding the output time limits: Taking size, weight, and cost into consideration, the heat dissipation capability of the voltage generator that is used for withstanding voltage tests has been designed to be one half that of the rated output. Use the TOS5300 Series within the following limits. If you use the product in a manner that exceeds these limits, the output section may overheat, and the internal protection circuits may be activated. If this happens, stop testing, and wait until the TOS5300 Series returns to its normal temperature.

Ambient temperature	Upper limit	Pause time	Output time
t ≤ 40 °C	$50 \text{ mA} \le i \le 110 \text{ mA}$	Greater than or equal to the output time	30 min. max.
	$i \le 50 \text{ mA}$	Not necessary	Continuous output possible

(Output time = voltage rise time + test time + voltage fall time)

*2. Regarding the test voltage waveform:

Waveform distortions may occur if an DUT whose capacitance is dependent on voltage (for example, an DUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

For both True rms and Mean-value response, 50 ms or above response time is required to satisfy the measurement accuracy.

Regarding ammeter and judgment accuracy:

During AC withstanding voltage tests, current also flows in the stray capacitance of items such as the measurement leads and jigs. This current that flows in the stray capacitances is added to the current that flows in the DUT, and the sum of these currents is measured. Especially if you want to perform judgments with high sensitivity and accuracy, it is necessary to consider methods to limit the current that flows in these stray capacitances, such as by adding upper and lower limits.

Output voltage	1 kV	2 kV	5 kV
When using 350 mm long test leads that are suspended in air (TYP)	2 μΑ	4 μΑ	10 μΑ
When using the accessory, high test lead TL31-TOS (TYP)	16 μΑ	32 μΑ	80 μΑ

In case of 70 % humidity or higher, it is considerable to add 50 µA on the Limit value

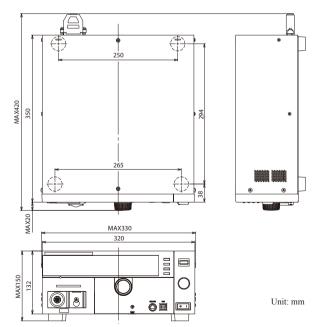
TOS5200 SERIES AC Hipot Tester

Other features / Interfaces

Test mode							
	Double action feature	7	Tests can only be started by pressing and releasing STOP and then pressing START within 0.5 seconds of releasing the STOP switch				
	Length of time to maintain a PASS j	udgment result	You can set the length of time to maintain a PASS judgment: 50 ms, 100 ms, 200 ms, 1 s, 2 s,5 s, or HOLD.				
	Momentary feature	7	Fests are only executed while the START switch is held down.				
	Fail mode feature	Т	This feature enables you to prevent remotely transmitted stop signals from clearing FAIL judgments and PROTECTION modes.				
	Timer feature	7	This feature finishes tests when the specified time elapses.				
	Output voltage monitor feature		If output voltage exceeds "setting + 350 V" or is lower than "setting - 350 V," the TOS5200 switches to PROTECTION mode, output is turned off, and testing finishes.				
	Memory	Ţ	Up to three sets of test conditions can be saved to memory.				
	Key lock	I	Locks panel key operations (settings and changes).				
rotective fe	stective features		Under any of the following conditions, the TOS5200 switches to the PROTECTION state, mmediately turns output off, and stops testing. A message is displayed on the screen.				
	Interlock Protection	A	An interlock signal has been detected.				
	Power Supply Protection	I I	An error was detected in the power supply.				
	Volt Error Protection		While monitoring the output voltage, a voltage outside of the rated limits was detected. AC or DC withstanding voltage tests: ±350 V				
	Over Load Protection		During a withstanding voltage test, a value that is greater than or equal to the output limit power was specified. AC withstanding voltage test: 550 VA.				
	Over Heat Protection	7	The internal temperature of the TOS5200 became too high.				
	Over Rating Protection	I	During a withstanding voltage test, the output current was generated for a length of time that exceeds the regulated time.				
	Remote Protection	A	A connection to or disconnection from the front-panel REMOTE connector was detected.				
	SIGNAL I/O Protection	1	The rear-panel SIGNAL I/O connector's ENABLE signal has changed.				
	USB Protection	7	The USB connector has been disconnected while the TOS5200 was being controlled through the USB interface.				
nterfaces	USB	J	USB Specification 2.0				
	RS232C *1		D-SUB 9-pin connector on the rear panel (compliant with EIA-232-D) All functions other than the POWER switch and KEY-LOCK				
	REMOTE		Front-panel 9-pin MINI DIN connector. By connecting an optional device to this connector, you can control the starting and stopping of tests remotely.				
	SIGNAL I/O	F	Rear-panel D-sub 25-pin connector				

^{*1. &}quot;Talk mode" can be set, when RS232C is used as comunication interface.

Talk mode	Description			
0	It responds only for commands from PC. (Default setting)			
1	It responds automatically for start and end test, and returns the status, setting value, measured value.			
	Response at start		<start></start>	
	Response at end of test	Status	<pass>, <u_fail>, <l_fail>, <prot>, <about></about></prot></l_fail></u_fail></pass>	
		Setting value, Measured value	Test No., Programme No., Test mode, Measured voltage, Measured current, Test time	


AC Hipot Tester

General

Display			LCD: LED backlight
Environ-	Installation location		Indoors, at a height of up to 2000 m
ment	Spec guaranteed range temperature/humidity		5 °C to 35 °C (41 °F to 95 °F)/20 %rh to 80 %rh (no condensation)
	Operating range temperature/humidity		0 °C to 40 °C (32 °F to 104 °F)/20 %rh to 80 %rh (no condensation)
	Storage range temperature/humidity		-20 °C to 70 °C (-4 °F to 158 °F)/90 %rh or less (no condensation)
Power supply	Nominal voltage range (allowable voltage range)		100 VAC to 240 VAC (90 VAC to 250 VAC)
	Power		` '
	consumptio	When rated load isconnected	800 VA max.
	Allowable free		47 Hz to 63 Hz
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1) 8.	30 MΩ or more (500 VDC)
Withstanding voltage (between AC LINE and the chassis)			1500 VAC. one minute
			25 AAC. 0.1 Ω or less
			Complies with the requirements of the following directive and standards. EMC Directive 2014/30/EU EN 61326-1 (Class A*3) EN 55011 (Class A*3, Group 1*4) EN 61000-3-2, EN 61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to the TOS5200 is less than 2.5 m. Shielded cables are being used when using the SIGNAL I/O. The high-voltage test lead TL31-TOS is being used. Electrical discharges are not occurring outside the DUT.
Safety *1			Complies with the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU*2 EN 61010-1 (Class I*5, Pollution degree 2*6)
Dimensions (mm(inches))(maximum)		aximum)	320 (12.6") (330(12.99")) W × 132(5.2") (150(5.91")) H × 350(13.78") (420(16.54")) D
Weight			Approx. 14 kg (30.9 lbs)
			Power cord 1 pc., High-voltage test lead (TL31-TOS) 1 set (1 red wire and 1 black wire, each with alligator clips); 1.5 m, SIGNAL I/O plug 1 set; assembly type, High-voltage warning sticker 1 pc., Setup Guide 1 pc., Quick Reference English: 1 pc., Japanese: 1 pc., Safety Information 1 pc., CD-ROM 1 pc.

- *1. Does not apply to specially ordered or modified TOS5200s.
- *2. Limited to products that have the CE/UKCA mark on their panels. Not be in compliance with EMC limits unless the ferrite core is attached on the cable for connection of J1 connector.
- *3. This is a Class A equipment. The TOS5200 is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.
- *4. This is a Group 1 equipment. The TOS5200 does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.
- *5. This is a Class I equipment. Be sure to ground the TOS5200's protective conductor terminal. The safety of this product is only guaranteed when the product is properly grounded.
- *6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

—External dimensional diagrams—

Complied with the test voltage -25 V to -1000 Vdc of the JIS C 1302-2002

TOS7200(IR)

Testing voltage range -25 V to -1,000 V, Resistance measurement range 0.01 $M\Omega$ to 5,000 $M\Omega$

The TOS7200 is an insulation resistance tester available for a wide range of various electric and electronic components, as well as electric and electronic equipment. The output voltage can be set at desired value in the range of - 25 V to -1,000 V with a resolution of 1 V. (conforms with the output characteristics of the JIS C 1302-2002). As it is fitted with a window comparator and timer function, the tester is capable of efficiently conducting insulation resistance tests based on various safety standards. In addition, this product is equipped with panel memory as standard feature, which can be recalled by remote control, SIGNAL I/O connector, and the RS-232C interface for easy automatic testing system construction.

- Provided with the discharge function
- Equipped with the window comparator
- Hold function
 (which holds the measured resistance at the end of testing while PASS judgment is being output)
- Provided with the timer function
- Rear output terminals
- Measured-value monitoring terminals
- Equipped with the panel memory (enabling 10 different settings to be stored)
- Equipped with the SIGNAL I/O connector and remote control terminal
- Equipped with the RS232C interface as standard

Insulation Resistance Tester

Output section								
Output voltage range		-25 V to -1000 V						
Output voltage range	Resolution	1 V						
	Accuracy	±(1.5 % of setting	- 2 V)					
Maximum rated load		1 W (1 000 V/1 m						
Maximum rated current		1 mA	.)					
Output terminals	Output type	Floating						
Output terminars	Isolation voltage	±1000 VDC						
Dinnla	1000 V / under no load	2 Vp-p or less						
Ripple	Maximum rated load	10 Vp-p or less						
Short-circuiting curr		12 mA or less						
Output rise time	CIII		to 90 %) [no load]					
Discharge function			t the end of test (discharge resis	stance: 25 kO)				
Voltmeter		Forced discharge	t the end of test (discharge resis	Stance. 23 K22)				
Measurement range		0 V to -1200 V						
Resolution		1 V						
Accuracy		±(1 % of reading	1 V)					
Resistance meter		±(1 /0 01 reading	1 V)					
Measurement range		0.01 MO to 5000	IΩ (In the range of over 100 nA	A to a maximum re	ated current of 1 m A)			
		0.01 1/122 to 5000	132 (In the range of over 100 hA	A to a maximum re	ned current of 1 m/A)			
Display		R < 10.0 MΩ		$0.0M\Omega \le R < 1000$		— K = measur	ed insula	ation resistance
		MΩ	□□.□ MΩ	□□□ ΜΩ	0000 ΜΩ			
Accuracy		100 nA < i ≤ 20	0 nA 200 nA < i ≤ 1 μA 1	1 μA < i ≤ 1 mA	7			
,		$\pm (10 \% \text{ of read})$		(2% of reading)	i =measured output-ve	oltage value/measured	l resistar	nce value
			ange of 20 %rh to 70 %rh (no co		⊐ no disturbance such as s	swinging of the test le	adwirel	
M		. ,				, winging of the test ic	au wirej	
Measurement range	AUTO		rement range is selectable betw			1		
	FIX	-	nges the current measurement r				-t-t)	
II-lding Constinu	FIX		e value obtained at the end of to				status).	
Holding function		Holds the resistar	e value obtained at the end of te	esting white a PAS	ss judgment is being out	out.		
Indonesia and Competing								
Judgment function								
Judgment function Judgement method/a	ction	Judgement	udgement method			Display		SIGNAL I/O
	ction	Judgement UPPER FAIL	f a resistance value equal or hig		er resistance is detected,	FAIL LED lights.	Buzzer ON	Outputs an
	ction	UPPER FAIL	f a resistance value equal or hig he tester shuts off the output an	nd returns an UPP	er resistance is detected, ER FAIL judgment.	FAIL LED lights. UPPER LED lights.	ON	Outputs an U FAIL signal
	ction		f a resistance value equal or hig	nd returns an UPP	er resistance is detected, ER FAIL judgment. esistance is detected,	FAIL LED lights.		Outputs an
	ction	UPPER FAIL	f a resistance value equal or hig he tester shuts off the output an f a resistance value equal or les he tester shuts off the output an Note that no judgment is made v	nd returns an UPP ss than the lower r and returns a LOWI within the judgme	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment.	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED	ON	Outputs an U FAIL signal Outputs a
	ction	UPPER FAIL LOWER FAIL	f a resistance value equal or hig he tester shuts off the output an f a resistance value equal or les he tester shuts off the output an Note that no judgment is made v WAIT TIME) after the start of	nd returns an UPP ss than the lower r nd returns a LOWI within the judgme the test.	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights.	ON	Outputs an U FAIL signal Outputs a L FAIL signal
	ction	UPPER FAIL	f a resistance value equal or hig he tester shuts off the output an f a resistance value equal or les he tester shuts off the output an Note that no judgment is made v WAIT TIME) after the start of f no abnormality is found when	nd returns an UPP. ss than the lower rad returns a LOWI within the judgme the test. n the set test time I	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED	ON	Outputs an U FAIL signal Outputs a L FAIL signal
	ction	UPPER FAIL LOWER FAIL PASS	f a resistance value equal or hig he tester shuts off the output an f a resistance value equal or les he tester shuts off the output an sote that no judgment is made v WAIT TIME) after the start of f no abnormality is found when he tester shuts off the output an	nd returns an UPP. ss than the lower rand returns a LOWI within the judgme the test. In the set test time I and returns a PASS	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights.	ON ON	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
	ction	UPPER FAIL LOWER FAIL PASS • A PASS signal is	f a resistance value equal or highe tester shuts off the output and a resistance value equal or less the tester shuts off the output and solve that no judgment is made wwAIT TIME) after the start of f no abnormality is found when the tester shuts off the output and output for approx. 200 ms. How	nd returns an UPP. ss than the lower rand returns a LOWI within the judgme the test. In the set test time I and returns a PASS	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights.	ON ON	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
	ction	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signa • An UPPER FAII	f a resistance value equal or highe tester shuts off the output and f a resistance value equal or leshe tester shuts off the output and sote that no judgment is made vWAIT TIME) after the start of f no abnormality is found when he tester shuts off the output and output of a popular or a pop	and returns an UPP, as than the lower rad returns a LOWI within the judgme the test. In the set test time I defense a PASS wever, if the PASS tinuously output u	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inpu	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal	ON ON ON is continu	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
	ction	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signa • An UPPER FAII	f a resistance value equal or highe tester shuts off the output and a resistance value equal or less he tester shuts off the output and lote that no judgment is made wwalt TIME) after the start of f no abnormality is found when he tester shuts off the output and output for approx. 200 ms. How is input.	and returns an UPP, as than the lower rad returns a LOWI within the judgme the test. In the set test time I defense a PASS wever, if the PASS tinuously output u	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inpu	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal	ON ON ON is continu	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Judgement method/a	ction	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signa • An UPPER FAII • The FAIL and P.	f a resistance value equal or highe tester shuts off the output and f a resistance value equal or leshe tester shuts off the output and sote that no judgment is made vWAIT TIME) after the start of f no abnormality is found when he tester shuts off the output and output of a popular or a pop	ss than the lower r nd returns a LOWI within the judgme the test. n the set test time land returns a PASS wever, if the PASS tinuously output u	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input e cannot be adjusted indiv	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal	ON ON ON is continu	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Judgement method/a		UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signa • An UPPER FAIL • The FAIL and P. 0.01 MΩ to 5000	f a resistance value equal or highe tester shuts off the output and a resistance value equal or leshe tester shuts off the output and the start of the output and the start of the output and the start of for abnormality is found when the tester shuts off the output and the putput for approx. 200 ms. How is input. Or LOWER FAIL signal is cont SS buzzer volumes are adjustable.	ss than the lower rad returns a LOWI within the judgme the test. In the set test time Indirectors a PASS wever, if the PASS tinuously output uble. However, they am rated current o	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inpure cannot be adjusted indiv	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal	ON ON ON is continu	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Judgement method/a	ipper resistance (UPPER)	PASS • A PASS signal is til a STOP signa • An UPPER FAII • The FAIL and P. 0.01 MΩ to 5000 0.01 MΩ to 5000	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or leshe tester shuts off the output an Note that no judgment is made wWAIT TIME) after the start of f no abnormality is found when he tester shuts off the output an putput for approx. 200 ms. How is input. or LOWER FAIL signal is cont SS buzzer volumes are adjustab tΩ [In the range of the maximu IΩ [In the range of the maximu]	ss than the lower rad returns a LOWI within the judgme the test. In the set test time had returns a PASS wever, if the PASS tinuously output u ble. However, they arrated current o am rated current o	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time nas elapsed, judgment. HOLD function is set to ntil a STOP signal is input r cannot be adjusted indiv	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal at. ridually, as they are so	ON ON ON et in com	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Judgement method/a Setting range for the t Setting range for the l	upper resistance (UPPER) ower resistance (LOWER)	PASS • A PASS signal is til a STOP signa • An UPPER FAII and P. • Doll MΩ to 5000 Judgement curr	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or les he tester shuts off the output an Note that no judgment is made value (TIME) after the start of fa no abnormality is found when he tester shuts off the output an output for approx. 200 ms. How is input. Or LOWER FAIL signal is cont SS buzzer volumes are adjustab $\Omega\Omega$ [In the range of the maximu Ω [In the range of the maximu at Ω	ss than the lower rand returns a LOWI within the judgme the test. In the set test time and returns a PASS wever, if the PASS tinuously output uble. However, they am rated current of the rate of the pass of the	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inpure cannot be adjusted indiv	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal at ridually, as they are so $1~\mu$ A $<$ i \leq 1 mA	ON ON ON et in com	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	PASS • A PASS signal is til a STOP signa • An UPPER FAII • The FAIL and P. 0.01 MΩ to 5000 0.01 MΩ to 5000	f a resistance value equal or highe tester shuts off the output and a resistance value equal or leshe tester shuts off the output and to that no judgment is made value to that no judgment is made value. TIME) after the start of a no abnormality is found when the tester shuts off the output and the tester shuts of the output and the tester shuts off the output and the tester shuts off the output and the tester shuts of the output and the tester shuts of the output and the tester shuts off the output and the tester shuts of the output and the tester shuts of the output and the tester shuts of the out	and returns an UPP. ss than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they am rated current o am rated current o and < i ≤ 200 nA	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiv	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal at. ridually, as they are so $1 \mu A < i \le 1 mA \pm (2 \% \text{ of setting+3 dig})$	ON ON ON et in com	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and Parameter of Ω to 5000 0.01 MΩ to 5000 Judgement curr UPPER,	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or les he tester shuts off the output an Note that no judgment is made value (TIME) after the start of fa no abnormality is found when he tester shuts off the output an output for approx. 200 ms. How is input. Or LOWER FAIL signal is cont SS buzzer volumes are adjustab $\Omega\Omega$ [In the range of the maximu Ω [In the range of the maximu at Ω	ss than the lower rand returns a LOWI within the judgme the test. In the set test time and returns a PASS wever, if the PASS tinuously output uble. However, they am rated current of the rate of the pass of the	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time nas elapsed, judgment. HOLD function is set to ntil a STOP signal is input r cannot be adjusted indiv	FAIL LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal at ridually, as they are so $1~\mu$ A $<$ i \leq 1 mA	ON ON ON et in com	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and Parameter of Ω to 5000 0.01 MΩ to 5000 Judgement curr UPPER,	fa resistance value equal or higher tester shuts off the output and a resistance value equal or less the tester shuts off the output and solve that no judgment is made value and the start of far on abnormality is found when the tester shuts off the output and output for approx. 200 ms. How is input. For LOWER FAIL signal is contained as the contained are adjustable of the maximu of LOWER fails of the maximu of the tester shuts of the maximu of the range of the maximu of the fail	and returns an UPP. ses than the lower rand returns a LOWI within the judgme The test. In the set test time Indirector a PASS wever, if the PASS tinuously output u ble. However, they am rated current o am rated current	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indivirules: $\frac{1}{2} \frac{1}{2} \frac{1}{2$	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal int. ridually, as they are so that $\pm (2 \% \text{ of setting+3 dig} \pm (2 \% $	ON ON ON et in com gits) gits) gits) gits)	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and Parameter of Ω to 5000 0.01 MΩ to 5000 Judgement curr UPPER,	fa resistance value equal or higher tester shuts off the output and a resistance value equal or less the tester shuts off the output and solve that no judgment is made water that no judgment is made water that no judgment is found when the tester shuts off the output and putput for approx. 200 ms. How is input. For LOWER FAIL signal is contained in the range of the maximut for [In the range	ss than the lower rad returns a LOWI within the judgme the test. In the set test time Indirection a PASS wever, if the PASS tinuously output uit ble. However, they are rated current our rated current our rated current or in A < i ≤ 200 nA ———————————————————————————————————	r resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inprecannot be adjusted indiverses. r less] 200nA < i ≤ 1 μA —— ±(5 % of setting+5 digits)	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal in the ridually, as they are so that the ridually are so that the ridually are so that the ridual ridually are so that the ridual r	ON ON ON on is continued in commercial comme	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and Parameter of Ω to 5000 0.01 MΩ to 5000 Judgement curr UPPER,	fa resistance value equal or highe tester shuts off the output and a resistance value equal or less the tester shuts off the output and solve that no judgment is made water that no judgment is made water that no judgment is found when the tester shuts off the output and putput for approx. 200 ms. How is input. The short of the output and putput for approx. 200 ms. How is input. The short of the output and putput for approx. 200 ms. How is input. The short of the output and putput for approx. 200 ms. How is input. The short of the maximut of the short of the short of the maximut of the short of the	ss than the lower rand returns a LOWI within the judgme the test. In the set test time Indirection at PASS wever, if the PASS tinuously output up to ble. However, they are rated current of the test of the pass of setting+5 digits of setting+5 digits) of setting+5 digits)	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted individual of the set of the	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal int. ridually, as they are so $1 \mu A < i \le 1 mA$ $\pm (2 \% \text{ of setting+3 dig} \pm (2 \% \text{ of setting+3 dig})$	ON ON ON ON et in com et in com gits) gits) gits) gits) gits) gits) Ju	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output ur
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and Parameter of Ω to 5000 0.01 MΩ to 5000 Judgement curr UPPER,	fa resistance value equal or higher tester shuts off the output and a resistance value equal or less the tester shuts off the output and solve that no judgment is made water that no judgment is made water that no judgment is found when the tester shuts off the output and putput for approx. 200 ms. How is input. For LOWER FAIL signal is contained in the range of the maximut for [In the range	and returns an UPP. ss than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they time rated current o time rated	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inpresented indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. HOLD," the signal in the ridually, as they are so that the ridually, as they are so that $\pm (2\% \text{ of setting} + 3 \text{ dig} \pm$	ON ON ON on on et in com egits) egits) egits) egits) egits) egits) egits) egits) egits)	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output un mon.
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	PASS • A PASS signal is til a STOP signa • An UPPER FAIL • The FAIL and P. 0.01 MΩ to 5000 0.01 MΩ to 5000 Judgement curr UPPER, LOWER	fa resistance value equal or higher tester shuts off the output and a resistance value equal or leshe tester shuts off the output and so that no judgment is made value that no judgment is made value. TIME) after the start of fine abnormality is found when the tester shuts off the output and the tester shuts of the output and the tester shuts of the tester shuts of the output and the tester shuts off the output and the tester shuts of the output and the output and the tester shuts of the output and the output and the tester shuts of the output and the output a	and returns an UPP. ses than the lower read returns a LOWI within the judgme The test. In the set test time Indirectors a PASS wever, if the PASS tinuously output ui ble. However, they time rated current o time rated	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is inpresent the set of the set	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal at the sidually, as they are set in the sidual sidually, as they are set in the sidual si	ON ON ON ON et in com egits) gits) gits) gits) gits) gits) gits)	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output un mon.
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and P. 0.01 MΩ to 5000 Judgement curr UPPER, LOWER	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or leshe tester shuts off the output an vote that no judgment is made v WAIT TIME) after the start off no abnormality is found when tester shuts off the output an output for approx. 200 ms. How is input. or LOWER FAIL signal is cont SS buzzer volumes are adjustable $100 \mathrm{Im} \mathrm{Im} $	and returns an UPP. ses than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they um rated current o um rated current o and < i ≤ 200 nA — — — — — — — — — — — — — — — — — —	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal sit. ridually, as they are so $\frac{1}{2}$ $$	ON ON ON ON on on et in com gits) gits) gits) gits) gits) gits) gits) gits) gits) bance su	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output ur umon. dgement current = st voltage JPPER,LOWER) ch as swinging o
Setting range for the U Setting range for the I Judgement accuracy	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signa • An UPPER FAII • The FAIL and P. 0.01 MΩ to 5000 Judgement curr UPPER, LOWER [The humidity method to the test leadwires of the lower judgment curre of the	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or leshe tester shuts off the output an vote that no judgment is made v WAIT TIME) after the start of fno abnormality is found when the tester shuts off the output an output for approx. 200 ms. How is input. or LOWER FAIL signal is cont SS buzzer volumes are adjustable $100 \mathrm{Im} $	and returns an UPP. ses than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they um rated current o um rated current o and < i ≤ 200 nA — — — — — — — — — — — — — — — — — —	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal sit. ridually, as they are so $\frac{1}{2}$ $$	ON ON ON ON on on et in com gits) gits) gits) gits) gits) gits) gits) gits) gits) bance su	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output ur umon. dgement current = st voltage JPPER,LOWER) ch as swinging o
Setting range for the u Setting range for the l Judgement accuracy For both UPPER and	upper resistance (UPPER) ower resistance (LOWER)	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and P. 0.01 MΩ to 5000 Judgement curr UPPER, LOWER	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or leshe tester shuts off the output an vote that no judgment is made v WAIT TIME) after the start of fno abnormality is found when the tester shuts off the output an output for approx. 200 ms. How is input. or LOWER FAIL signal is cont SS buzzer volumes are adjustable $100 \mathrm{Im} $	and returns an UPP. ses than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they um rated current o um rated current o and < i ≤ 200 nA — — — — — — — — — — — — — — — — — —	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal sit. ridually, as they are so $\frac{1}{2}$ $$	ON ON ON ON on on et in com gits) gits) gits) gits) gits) gits) gits) gits) gits) bance su	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output un umon. dgement current = st voltage JPPER,LOWER) ch as swinging o
Setting range for the u Setting range for the l Setting range for the l Judgement accuracy For both UPPER and	upper resistance (UPPER) ower resistance (LOWER) LOWER	UPPER FAIL LOWER FAIL PASS • A PASS signal is til a STOP signal • An UPPER FAII • The FAIL and Paragraph • O.01 MΩ to 5000 Judgement curr UPPER, LOWER [The humidity must the test leadwires [The lower judgement a lower judgement and were judgement with the state of the lower judgement in the lower judgeme	fa resistance value equal or highe tester shuts off the output an fa resistance value equal or leshe tester shuts off the output an Note that no judgment is made value was fa resistance value equal or leshe tester shuts off the output an Note that no judgment is made value. WAIT TIME) after the start of fine abnormality is found when the tester shuts off the output an output for approx. 200 ms. How is input. For LOWER FAIL signal is contained to the start of the maximu of LOWER FAIL signal is contained to the start of the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of LOWER FAIL signal is contained to the tester shuts of the maximu of the tester shuts of the maximu of the tester shuts of the maximu of the teste	and returns an UPP. ses than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they um rated current o um rated current o and < i ≤ 200 nA — — — — — — — — — — — — — — — — — —	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal sit. ridually, as they are so $\frac{1}{2}$ $$	ON ON ON ON on on et in com gits) gits) gits) gits) gits) gits) gits) gits) gits) bance su	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output un umon. dgement current = st voltage JPPER,LOWER) ch as swinging o
Setting range for the testing range for the but the setting range	upper resistance (UPPER) ower resistance (LOWER) LOWER	PASS •A PASS signal is til a STOP signal An UPPER FAIL •O.01 MΩ to 5000 •O.01 MΩ to 5000 Judgement curr UPPER, LOWER [The humidity muthe test leadwires [The lower judgma a lower judgment of the stop of	fa resistance value equal or highe tester shuts off the output and a resistance value equal or leshe tester shuts off the output and so that no judgment is made value that no judgment is made value. TIME) after the start of fine abnormality is found when the tester shuts off the output and the tester shuts off the maximut and [In the range of the maximut and [In the range o	and returns an UPP. ses than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they um rated current o um rated current o and < i ≤ 200 nA — — — — — — — — — — — — — — — — — —	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal sit. ridually, as they are so $\frac{1}{2}$ $$	ON ON ON ON on on et in com gits) gits) gits) gits) gits) gits) gits) gits) gits) bance su	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output un umon. dgement current = st voltage JPPER,LOWER) ch as swinging o
Setting range for the testing range for the but the setting range	upper resistance (UPPER) ower resistance (LOWER) LOWER	PASS •A PASS signal is til a STOP signal An UPPER FAIL •O.01 MΩ to 5000 •O.01 MΩ to 5000 Judgement curr UPPER, LOWER [The humidity muthe test leadwires [The lower judgma a lower judgment of the stop of	fa resistance value equal or higher tester shuts off the output and a resistance value equal or leshe tester shuts off the output and so that no judgment is made value to the tester shuts off the output and so that no judgment is found when the tester shuts off the output and the tester shuts of the output and the tester shuts of the output and the tester shuts of the output and the te	and returns an UPP. ses than the lower rad returns a LOWI within the judgme the test. In the set test time I and returns a PASS wever, if the PASS tinuously output u ble. However, they um rated current o um rated current o and < i ≤ 200 nA — — — — — — — — — — — — — — — — — —	er resistance is detected, ER FAIL judgment. esistance is detected, ER FAIL judgment. nt wait time has elapsed, judgment. HOLD function is set to ntil a STOP signal is input cannot be adjusted indiversely and the set of	FAIL LED lights. UPPER LED lights. UPPER LED lights. FAIL LED lights. LOWER LED lights. LOWER LED lights. PASS LED lights. "HOLD," the signal sit. ridually, as they are so $\frac{1}{2}$ $$	ON ON ON ON on on et in com gits) gits) gits) gits) gits) gits) gits) gits) gits) bance su	Outputs an U FAIL signal Outputs a L FAIL signal Outputs a PASS signal uously output un umon. dgement current = st voltage JPPER,LOWER) ch as swinging o

Insulation Resistance Tester

Interface and Other Functions

REMOTE	

6-pin mini-DIN connector on the front panel

The optional remote controller RC01-TOS or RC02-TOS is connected to remotely control starting/stopping of a test (note that a DIN-mini DIN adapter is required).

SIGNAL I/O

D-S	D-SUB 25-pin connector on the rear panel				
No.	No. Signal name I/O		Description of signal		
1	PM0	I	LSB *		
2	PM1	I	*	[Pin Configuration for the	
3	PM2	I	*	SIGNAL I/O Connector]	
4	PM3	I	MSB *		
5	N.C			13 12 11 10 9 8 7 6 5 4 3 2 1	
6	N.C			25 24 23 22 21 20 19 18 17 16 15 14	
7	N.C				
8	N.C				
9	STB	I	Input terminal for the st	robe signal of the panel memory	
10	N.C				
11	N.C				
12	N.C				
13	COM		Circuit common (chassis	s potential)	
14	HV ON	О	ON during a test or while a voltage remains between the output terminals		
15	TEST	О	ON during a test		
16	PASS	О	ON for approx. 0.2 seconds when PASS judgment is made, or continuously ON while PASS HOLD is activated		
17	U FAIL	О	Continuously ON if an insulation resistance equal to or exceed-ing the upper resistance is detected, resulting in FAIL judgment		
18	L FAIL	О	Continuously ON if an insulation resistance equal to or falling below the lower resistance is detected, resulting in FAIL judg-ment		
19	READY	О	ON during standby		
20	N.C				
21	START	I	Input terminal for the START signal		
22	STOP	I	Input terminal for the ST	FOP signal	
23	ENABLE	I	Remote control enable s	ignal input terminal	
24	N.C			-	
25	COM		Circuit common (chassis potential)		

^{* 1-}digit BCD active LOW input. Panel memory's selection signal input terminal

Input specifications

High-level input voltage	11 V to 15 V	All input signals are active Low controlled.
Low-level input voltage	0 V to 4 V	The input terminal is pulled up to +12 V
Low-level input current	-5 mA maximum	
Input time width	5 ms minimum	is equivalent to inputting a high-level signal.
Input time width	5 ms minimum	is equivalent to inputting a nign-level sig

Οι	output specifications		
	Output method	Open collector output (4.5 V to 30 V DC)	
	Output withstand voltage	30 V DC	
	Output saturation voltage	Approx. 1.1 V (at 25°C)	
	Maximum output current	400 mA (TOTAL)	

ANALOG OUT

Outputs a logarithmically compressed voltage corresponding to the measured resistance value

Outputs a logarithm	icany compressed voltage corresponding to the measured resistance value
+	$\label{eq:volume} \begin{split} &Vo = log~(1 + Rx~/~IM\Omega)\\ &where ~Rx = measured ~resistance~value\\ &(1~M\Omega:~0.30~V;~10~M\Omega:~1.04~V;~100~M\Omega:~2.00~V;~1000~M\Omega:~3.00~V;\\ &10000~M\Omega~or~more:~4.00~V).~Output~impedance:~1~k\Omega \end{split}$
COM	Analog output-circuit common
Accuracy	±(2 % of full scale)
RS232C	

D-SUB 9-pin connector on the rear panel (compliant with EIA-232-D)

All functions other than the POWER switch and KEY-LOCK function are remotely controllable.

	9600 bps / 19200 bps / 38400 bps
	(data: 8 bits; parity: none; stop bit: 2 bits fixed)
Dieplay	

7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, and 3-digit time display

Memory function

A maximum of 10 types of test conditions can be stored in memory.

Backup battery life

3 years or more (at 25 °C)

TEST MODE		
MOMENTARY A test is conducted only when the START switch is pressed.		
FAIL MODE	Disables cancellation of FAIL judgment using a stop signal via remote control.	
DOUBLE ACTION	Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second.	
PASS HOLD	Allows the time of holding PASS judgment to be set to $0.2\ s$ or HOLD.	
VEVI OCV		

Places the tester in a state in which no keystroke other than the START/STOP switch is accepted.

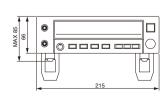
General Specifications

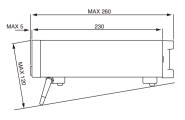
Environment			
Installation location		Indoors and at altitudes up to 2000 m	
Warranty range	Temperature	5 °C to 35 °C (41 °F to 95 °F)	
	Humidity	20 %rh to 80 %rh (no condensation)	
Operating range	Temperature	0 °C to 40 °C (32 °F to 104 °F)	
	Humidity	20 %rh to 80 %rh (no condensation)	
Storage range	Temperature	-20 °C to 70 °C (-4 °F to 158 °F)	
	Humidity	90 %rh or less (no condensation)	
Power requireme	nts		
Nominal voltage range (allowable voltage range)		100 V to 240 V AC (85 V to 250 V AC)	
Power consumption	on at rated load	30 VA maximum	
Allowable freque	ncy range	47 Hz to 63 Hz	
Insulation resista	nce	30 MΩ or more (500 V DC) [AC LINE to chassis]	
Hipot		1390 V AC for 2 seconds, 10 mA or less [AC LINE to chassis]	
Ground bond		25 A AC / 0.1 Ω or less	
Safety *1			

Conforms to the requirements of the following standard.

EN 61010-1 (Class I *2, Pollution degree 2 *3)

Dimensions (maximum) / Weight


215[8.46 inch] W × 66[2.60 inch] (85[3.35 inch]) H × 230[9.06 inch] (260[10.24 inch]) D mm / Approx. 2 kg (Approx.4.41 lbs)


Accessories

AC power cable: 1 pc. / TL08-TOS high-voltage test leadwires (1.5 m): 1 set / Setup guide: 1 pc. / Quick reference: English: 1pc., Japanese: 1pc. / Safety information: 1 pc. / CD-ROM: 1 pc.

- *1. Not applicable to custom order models.
- This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly.
- *3. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation

External dimensional diagrams -

Unit: mm

Ground Bond tester supporting standard compliance tests up to 60A

TOS6210

Test up to 60 A is possible!

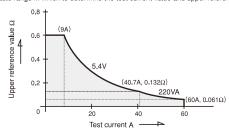
While inheriting the basic performance and functions of its predecessor (TOS6200), such as a constant current driving system that provides current waveforms with little skew and high measurement accuracy, the TOS6210 tester extends the maximum test current from 30 A to 60 A, which is demanded by the new standard. In addition, the tester also lets you judge the acceptability of the device under test based on the drop in voltage, as required in the standard. What's more, you can preset test conditions of up to 20 different types of safety standards, such as those for information technology equipment, home appliances, medical devices, and measuring instruments, in the memory on the main unit's panel.

A simple memory call operation allows you to set up a protective earth or protective bonding continuity test as stipulated in UL and other relevant specifications including IEC and JIS standards. The tester also features a set of functions that meet the specific needs of testing personnel, such as an offset cancellation function and a memo function that allows you to input calibration dates, production numbers, and other test-related information and read the input information later via the GPIB or RS232C interface.

- Test current value: 6 A to 60 A AC / Resistance value: $0.001~\Omega$ to $0.600~\Omega$
- Voltage drop-based judgment function
- Offset cancelling function
- Stores 100 test conditions in memory
- Incorporates test conditions into program
- Contact check function
- Equipped with standard GPIB and RS232C interfaces
- Equipped with standard test lead (TL12-TOS)

Output block				
Current setting range *1, *4		6.0 to 62.0 A AC (With respect to resistance resulting in output power of the maximum rated Output or less and an output terminal		
Current setting range 1, 4		voltage of 5.4 V or less)		
	Resolution	0.1A		
	Accuracy	$\pm (1\% \text{ of setting} \pm 0.4\text{A})$		
Maximum rated output	[recurrey	220 VA (at the output terminals)		
Distortion factor		2% or less (with respect to 0.1 Ω pure resistance load of 20 A or greater)		
Frequency		50/60 Hz, sine wave (selectable)		
rrequency	Accuracy	±200ppm		
Open terminal voltage	recuracy	6 Vrms or less		
Output method		PWM switching method		
Output ammeter		r was switching method		
Measurement range		0.0 to 66.0 A AC		
Resolution		0.1A		
Accuracy		± (1% of reading + 0.4A)		
Response		Mean value response/rms value display (response time: 200 ms)		
Holding function		The current measured at the end of test is held during the PASS or FAIL inteval		
Output voltmeter		0.004. (.003/4.0		
Measurement range		0.00 to 6.00 V AC		
Resolution		0.01V		
Offset cancel function		0.00 to 5.40 V (Offset ON/OFF function provided)		
Accuracy		± (1% of reading + 0.02V)		
Response		Mean value response/rms value display (response time: 200 ms)		
Holding function		The voltage measured at the end of test is held during the PASS or FAIL inteval		
Ohmmeter *2				
Measurement range		0.001 to 0.600 Ω		
Resolution		0.001 Ω		
Offset cancel function		0.000 to 0.600 Ω (Offset ON/OFF function provided)		
Accuracy		\pm (2% of reading + 0.003 Ω)		
Holding function		The resistance measured at the end of test is held during the PASS or FAIL interval		
Pass/fail judgement function *	3			
Resistance value-based judgen	nent	Window comparator system		
		•If a resistance value equal to or greater than the upper reference value is detected, a FAIL determination is returned.		
		•If a resistance value equal to or less than the lower reference value is detected, a FAIL determination is returned.		
		•If a resistance value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal.		
Satting some for the year	non nofomono volvo (LIDDED)	0.001 to 0.600Ω		
	per reference value (UPPER)	0.001 to 0.600 Ω		
Setting range for the lower reference value (LOWER)				
	ver reference value (EGWER)	0.001 Ω		
Resolution	ver reference value (EGW EK)			
Resolution Judgement accuracy		\pm (2% of UPPER + 0.003 Ω)		
Resolution		\pm (2% of UPPER + 0.003 Ω) Window comparator system		
Resolution Judgement accuracy		± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned.		
Resolution Judgement accuracy		± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned.		
Resolution Judgement accuracy		± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned.		
Resolution Judgement accuracy Sampled voltage value-based j	udgement	± (2% of UPPER + 0.003 Ω) Window comparator system If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal.		
Resolution Judgement accuracy Sampled voltage value-based j	udgement per reference value (UPPER) *4	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal.		
Resolution Judgement accuracy Sampled voltage value-based j	udgement	\pm (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the up Setting range for the low Resolution	udgement per reference value (UPPER) *4	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy	udgement per reference value (UPPER) *4	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V)		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy Calibration	udgement per reference value (UPPER) *4 ver reference value (LOWER)	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy	udgement per reference value (UPPER) *4	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V)		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the up Setting range for the low Resolution Judgement accuracy Calibration	udgement per reference value (UPPER) *4 ver reference value (LOWER) PASS	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy Calibration	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy Calibration LED	udgement per reference value (UPPER) *4 ver reference value (LOWER) PASS	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the up Setting range for the low Resolution Judgement accuracy Calibration	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy Calibration LED	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the up Setting range for the low Resolution Judgement accuracy Calibration LED	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. The buzzer sounds continuously under the following condition: •The measured value has been judged as PASS when the PASS holding time is set to HOLD. •The measured value has been judged as UPPER FAIL.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy Calibration LED	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS when the PASS holding time is set to HOLD. •The measured value has been judged as UPPER FAIL. •The measured value has been judged as LOWER FAIL. •The measured value has been judged as LOWER FAIL.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upp Setting range for the low Resolution Judgement accuracy Calibration LED	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. The measured value has been judged as PASS when the PASS holding time is set to HOLD. •The measured value has been judged as LOWER FAIL. The buzzer volume for FAIL or PASS judgment are adjustable.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upport of the low Resolution Judgement accuracy Calibration LED Buzzer	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. The buzzer sounds continuously under the following condition: I he measured value has been judged as VPPER FAIL. I he measured value has been judged as LOWER FAIL. I he measured value has been judged as LOWER FAIL.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the up Setting range for the low Resolution Judgement accuracy Calibration LED Buzzer	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL LOWER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. The buzzer sounds continuously under the following condition: •The measured value has been judged as PASS when the PASS holding time is set to HOLD. •The measured value has been judged as UPPER FAIL. •The measured value has been judged as LOWER FAIL. The buzzer volume for FAIL or PASS judgment are adjustable. Note that it cannot be adjusted individually since setting is shared with the setting for PASS.		
Resolution Judgement accuracy Sampled voltage value-based j Setting range for the upport of the low Resolution Judgement accuracy Calibration LED Buzzer	per reference value (UPPER) *4 ver reference value (LOWER) PASS UPPER FAIL	± (2% of UPPER + 0.003 Ω) Window comparator system •If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned. •If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. •If a voltage value equal to or greater than the lower reference value is detected, a FAIL determination is returned. •If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 0.01 to 5.40 V 0.01 to 5.40 V 0.01 V ± (2% of UPPER + 0.05 V) Calibration is performed with the rms value of the sine wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. The measured value has been judged as PASS when the PASS holding time is set to HOLD. •The measured value has been judged as LOWER FAIL. The buzzer volume for FAIL or PASS judgment are adjustable.		

*1: Time limitation with respect to output.


The heat radiation capacity at the output block of the tester is designed to be one-third of the rated output, accounting for size, weight, cost, and other factors. Always use the tester within the limitation values given below. Use of the tester beyond these limits will cause the temperature of the output block to rise excessively, potentially tripping the internal protection circuit. In this case, suspend testing for approximately 30 minutes, then press the STOP switch. When temperatures fall to normal levels, the tester will revert to ready status.

		Output time limitation	
Ambient	Test current I	Pause time	Maximum allowable
temperature t (°C)	(A)	r ause time	continuous test time
	40 < I ≤ 60	Equal to or greater than the test time	≤ 10 minutes
t ≤ 40°	20 < I ≤ 40	Equal to or greater than the test time	≤ 30 minutes
	I < 20	Not required	Continuous output possible

^{*2:} About ohmmeter's response time. A resistance value is instantaneously obtained, calculated using the measured voltage and current values. The response time of the ohmmeter complies

*4: Limited by the maximum rated output and the output terminal voltage. The tester can be used within the range shown below.

Allowable range in which to determine the test current value and upper reference value

with the response times of the voltmeter and ammeter.

*3: Resistance value-based and sampled voltage value-based judgments cannot be simultaneously conducted.

TOS6210

Ground Bond Tester

Environment		
Operating environment		Indoor use, Overvoltage Category II
Warranty range	Temperature	5 ° to 35 °C (41 °F to 95 °F)
	Humidity	20 %rh to 80 %rh (non condensing)
Operating range	Temperature	0 ° to 40 °C (32 °F to 104 °F)
	Humidity	20 %rh to 80 %rh (non condensing)
Storage range	Temperature	-20 ° to 70 °C (-4 ° F to +158 ° F)
	Humidity	90 %rh or less (non condensing)
Altitude		Up to 2000 m
Power requirement		
Allowable voltage range		85 to 250 V AC
Power consumption	At no load (READY)	60 VA or less
	At rated load	420 VA max.
Allowable frequency range		47 Hz to 63 Hz
Insulation resistance		$30 \text{ M}\Omega \text{ min.}$ (500 V DC), between AC line and chassis
Hipot		1390 V AC (2 seconds), between AC line and chassis
Ground bond		25 A AC/0.1 Ω max.
Safety *5		

Conforms to the requirements of the following directive and standard

Low Voltage Directive 2014/35/EU *6 EN61010-1 (Class I *7, Pollution degree 2 *8)

Electromagnetic compatibility (EMC) *5,*

Conforms to the requirements of the following directive and standard

EMC Directive 2014/30/EU

EN 61326-1 (Class A *9)

EN 55011 (Class A *9, Group 1 *10)

EN 61000-3-2

EN 61000-3-3

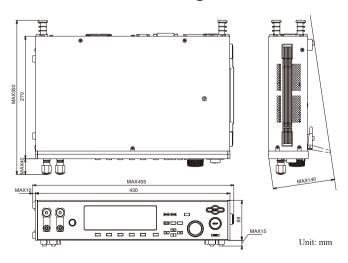
Under following conditions

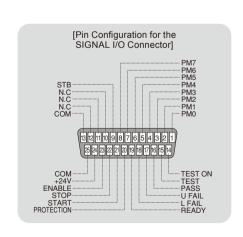
1. Used test leadwire (TL12-TOS)

2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.

Physical dimensions(maximum) / Weight

430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (350[13.78 inch]) D mm / Approx. 11 kg(Approx.24.25 lbs)


Accessories


AC power cord: 1 piece, Test leadwire TL12-TOS: 1 set, Short bar: 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.),

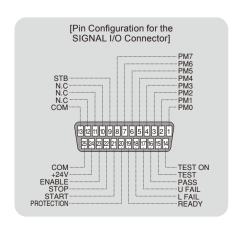
AC power fuse: 2 pieces (2, including one spare in the fuse holder), Operation manual: 1 copy

- Not applicable to custom order models.
- Only on models that have CE/ UKCA marking on the panel.
- This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly.
- Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation. This is a Class A equipment. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user
- takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts. *10: This is a Group I equipment. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/ analysis purpose.

External dimensional diagrams

Pursuing to maximize an easy operation, stylish design of Ground Bond Tester

TOS6200A



Adopting the constant current method to apply automated testing system

Perfect feature for the Production line which requires reduced tact time

The TOS6200A is designed to perform the ground bond tests required for class-I devices by safety standards such as IEC, EN, VDE, BS, UL, JIS, and the Electrical Appliance and Material Safety Low (Japan). Equipped with a new high-efficiency power supply, it is compact and lightweight, about half the size and weight of our conventional products, while achieving a large output of 150 VA. Use of the constant current method eliminates the need to reset test currents even in the face of fluctuating resistance values for the device being tested. The test duration can also be set from 0.3 s, making the tester suitable for production line testing, which requires reduced cycle time. This tester is also designed for ease of use, featuring a large, easy-to-read display, memory capacity for storage of 100 types of test conditions, and incorporation of test conditions into programs to enable automatic testing. The standard equipped GPIB and RS232C interfaces allow the user to use PCs or other devices to control test conditions such as test current, resistance value for judgement, and test duration, and enables read-back of measured values and test results.

- Test current value: 3 A to 30 A AC / Resistance value: 0.001 Ω to 1.200 Ω
- Offset cancelling function
- Stores 100 test conditions in memory
- Incorporates test conditions into program
- Contact check function
- Equipped with standard GPIB and RS232C interfaces
- Equipped with standard test lead (TL11-TOS)

Current setting ran	ge *1	3.0 Aac to 31.0 Aac (With respect to resistance resulting i	
		output power of the maximum rated Output or less and a output terminal voltage of 5.4 V or less)	
	Resolution	0.1 A	
	Accuracy	$\pm (1\% \text{ of setting} + 0.2 \text{ A})$	
Maximum rated output Distortion factor		150 VA (at the output terminals)2% or less (with respect to 0.1 Ω pure resistance load of 10 A	
Frequency		or greater) 50/60 Hz, sine wave (selectable)	
On an tanning trait	Accuracy	±200 ppm	
Open terminal volt Output method	age	6 Vrms or less PWM switching method	
Output ammeter			
Measurement range	e	0.0 Aac to 33.0 Aac	
Resolution Accuracy		0.1 A ± (1% of reading + 0.2 A)	
Response		Mean value response/rms value display (response time: 200 m	
Holding function		The current measured at the end of test is held during the PASS or FAIL inteval	
Output voltmeter		11100 of 11110 into the	
Measurement range	e	0.00 Vac to 6.00 Vac	
Resolution		0.01 V	
Offset cancel funct Accuracy	iion	0.00 V to 5.40 V (Offset ON/OFF function provided) ± (1% of reading + 0.02 V)	
Response		Mean value response/rms value display (response time: 200 m	
Holding function		The voltage measured at the end of test is held during the PASS or FAIL inteval	
Ohmmeter *2			
Measurement range	e	0.001 Ω to 1.200 Ω	
Resolution Offset cancel funct	tion	0.001 Ω 0.000 Ω to 1.200 Ω (Offset ON/OFF function provided)	
Accuracy	non	\pm (2% of reading + 0.003 Ω)	
Holding function		The resistance measured at the end of test is held during the	
Pass/fail judgemen	t function *3	PASS interval	
		 If a resistance value equal to or less than the lower referent value is detected, a FAIL determination is returned. If a resistance value has been judged as FAIL, the test shuts off the output and generates a FAIL signal. If the set time elapses without abnormalities, the test shuts off the output and generates a PASS signal. 	
Setting range for the value (UPPER)	ne upper rerence	0.001 Ω to 1.200 Ω	
Setting range for the value (LOWER)	ne upper rerence	0.001 Ω to 1.200 Ω	
Resolution		0.001 Ω	
Judgement accurac	-	± (2% of UPPER + 0.003 Ω)	
Sampled voltage value-based judgment		Window comparator system If a voltage value equal to or greater than the upper refe ence value is detected, a FAIL determination is returned. If a voltage value equal to or less than the lower referen value is detected, a FAIL determination is returned. If a voltage value has been judged as FAIL, the tester shu off the output and generates a FAIL signal. If the set time elapses without abnormalities, the test shuts off the output and generates a PASS signal.	
Setting range for the value (UPPER)	ne upper reference	0.01 V to 5.40 V	
Setting range for th value (LOWER)	ne lower reference	0.01 V to 5.40 V	
Resolution		0.01 V	
Judgment accuracy Calibration	/	± (2% of setting + 0.05 V) Calibration is performed with the rms value of the size	
LED	PASS	wave, using a pure resistance load. Lights for approximately 0.2 sec when the measured value	
LED		has been judged as PASS.It is lit continuously when the PASS holding time is set to HOLD.	
	UPPER FAIL	Lights if a resistance value equal to or greater than the uper reference value is detected and judged FAIL.	
	LOWER FAIL	Lights if a resistance value equal to or greater than the uper reference value is detected and judged FAIL.	
Buzzer		•The buzzer sounds for the pass holding time has been set if ti measured value has been judged as PASS. •The buzzer sounds continuously under the following conditio The measured value has been judged as PASS when the PAS holding time is set to HOLD. The measured value has been judged as UPPER FAIL. •The buzzer volume for FAIL or PASS judgment are adjustable. Note that it cannot be adjusted individually since setting	

Time			
Test Time	Setting range	0.3 s to 999 s Timer ON/OFF function is available.	
	Accuracy	± (100ppm of setting + 20 ms)	
Environmen	ı		
Operating er	vironment	Indoor use, Overvoltage Category II	
Warranty range		Temperature: 5 °C to 35 °C (41 °F to 95 °F) Humidity: 20 %rh to 80 %rh (non condensing)	
Operating range		Temperature: 0 °C to 40 °C (32 °F to 104 °F) Humidity: 20 %rh to 80 %rh (non condensing)	
Storage range		Temperature: -20 °C to +70 °C (-4 °F to +158 °F) Humidity: 90 %rh or less (non condensing)	
Altitude		Up to 2000 m	
Power requir	ement		
Allowable vo	oltage range	85 Vac to 250 Vac	
Power con-	At no load (READY)	60 VA or less	
sumption	At rated load	280 VA max.	
Allowable frequency range		47 Hz to 63 Hz	
Insulation resistance		30 MΩ min. (500 Vdc), between AC line and chassis	
Withstanding voltage		1390 Vac (2 seconds), between AC line and chassis	
Earth continuity		25 Aac/ 0.1 Ω max.	
Safety *4		·	

Conforms to the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU*5, EN 61010-1 (Class I *6, Pollution degree 2 *7)

Electromagnetic compatibility (EMC) *4,*

Conforms to the requirements of the following directive and standard.

EMC Directive 2014/30/EU

EN 61326-1 (Class A *8), EN 55011 (Class A *8, Group 1 *9), EN 61000-3-2, EN 61000-3-3 Under following conditions

1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.

2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.

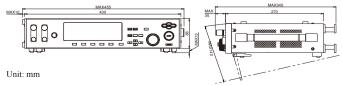
Physical dimensions (maximum) / Weight

430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm / Approx. 9 kg (Approx.19.84 lbs)

Accessories	
AC power cord	1 piece
Test leadwire TL11-TOS	1 set
Short bar	2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)
AC power fuse	2 pieces (2, including one spare in the fuse holder)
Operation manual	1 copy

*1: Time limitation with respect to output

The heat radiation capacity at the output block of the tester is designed to be one-third of the rated output, accounting for size, weight, cost, and other factors. Always use the tester within the limitation values given below. Use of the tester beyond these limits will cause the tempera-ture of the output block to rise excessively, potentially tripping the internal protection circuit. In this case, suspend testing for approximately 30 minutes, then press the STOP switch. When temperatures fall to normal levels, the tester will revert to ready status.


Output time limitation				
Ambient temperature t (°C)	Test current I (A) Pause time		Maximum allowable continuous test time	
t < 40°	$15 < I \le 30$	Equal to or greater than the test time	≤ 30 minutes	
1 ≤ 40	I ≤ 15	Not required	Continuous output possible	

*2: About ohmmeter's response time

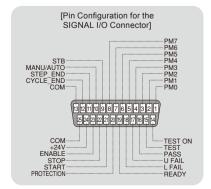
A resistance value is instantaneously obtained, calculated using the measured voltage and current values. The response time of the ohmmeter complies with the response times of the voltmeter and ammeter.

- *3: Resistance value-based and sampled voltage value-based judgments cannot be simultaneously conducted.
- *4: Not applicable to custom order models.
- *5: Only on models that have CE/ UKCA marking on the panel.
- *6: This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly
- Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.
- *8: This is a Class A equipment. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.
- *9: This is a Group I equipment. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/ analysis purpose

External dimensional diagrams

Leakage Current Tester

Supports touch current and protective conductor current (earth leakage current) tests

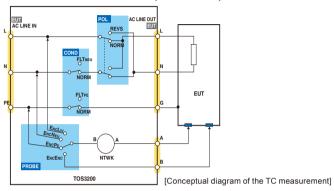


TOS3200 GPIB RS232C USB

A leakage current tester has now been added to the TOS Series... Conforms to international standard IEC 60990 ("Methods of measurement of touch current and protective conductor current").

The Leakage Current Tester TOS3200 is designed to test for leakage current (Touch Current and Protective Conductor Current) of general electrical apparatuses, excluding those used for medical purposes. With this tester, you can conduct tests conforming to various standards including IEC, UL, JIS and Electrical Appliance and Material Safety Law (Japan). You can set test conditions through simple operations on the panel because this tester holds in its memory the 51 types of test conditions for IT-related electrical equipment, electrical appliances, audio & visual equipment, lighting fixtures, power tools, and measuring and control instruments, accordingly with the standards of IEC/JIS and Electrical Appliance and Material Safety Law.

- Capable of measuring leakage current in three modes
- Eight built-in measurement circuit networks
- Up to 30 mA for RMS measurement
- Easy-to-understand operation
- Enables the continuous execution of tests
- Capable of saving test results
- 51 types of standard test conditions are preset
- Lets you manage the calibration time limit
- USB interface provided as standard



Leakage Current Tester

Capable of measuring leakage current in three modes

Touch current (TC) operating mode*

Enables you to measure the touch current flowing between the enclosure (accessible portion) of the electrical equipment under test (EUT) and the power line incorporating the earth wire, via Measuring Devices. For Measuring Devices, eight measurement circuit networks (NTWKs) conforming to the applicable standards are provided as standard. The switching of the polarities of the power line to the EUT, as well as single-fault conditions, are automatically set with relays inside the tester.

Protective conductor current (PCC) operating mode*

Enables you to measure the current flowing through the protective conductor (earth wire) by connecting the power plug (NEMA5-15 or an equivalent) of an item of 100 V electrical equipment to the socket on the front panel. A multi-outlet is available as an option (sold separately) to accommodate the different plugs used around the world.

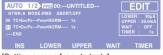
Meter (METER) operating mode

In the same way as an ordinary multimeter, enables you to measure voltage and current using measurement terminals A and B on the front panel. For voltage measurement, it offers a "safety extra low voltage" (SELV) detection function; for current measurement, it offers a measurement function using measurement circuit networks (NTWKs).

*TC=Touch Current PCC=Protective Conductor Current

Easy-to-understand operation

Simple operation is possible thanks to the intuitively understandable test condition menu and the function keys/rotary knobs.



[Setting screen for touch current (TC) measurement]

Enables the continuous execution of tests

Allows you to automatically conduct TC and PCC tests as a single sequence program by setting their test conditions as up to 100 independent tests (steps). You can set up to 100 sequence programs, with up to 500 steps in total. To support automation test, measurement point (probe setting) can be switched over without turning off EUT power line.

AUTO 2/2 PRG 01:		EDIT
NTWKB MODERMS	RANGE AUTO	ABORT OFF
App Rs T R1	■ Rs: 1.5 kΩ	Cs: 0.22 µF
Cs Rb		C1: 0.022 µF
В	R1: 10 kΩ	
TITLE NTWK	MODE RANG	E ABORT

[Setting screen for auto tests]

Up to 30 mA for RMS measurement

Capable of measuring 30 μ A to 30 mA for DC/RMS measurement and 50 μ A to 90 mA for PEAK measurement, both in three ranges. Two range switching functions are provided, namely, a fixed range function (FIX) and auto range function (AUTO), which conform to the current to be measured.For RMS measurement, the "true root-mean-square value" is achieved.

Eight built-in measurement circuit networks

It offers built-in eight measurement circuit networks for measuring the touch current of general electrical equipment.

Capable of saving test results

For independent tests, enables you to save not only test results but also the test date and time and the test conditions for up to 50 tests; for auto tests, you can save this data for up to 50 programs. You can also save the test results as external records using the USB and other interfaces.

51 types of standard test conditions are preset

The memory in the main unit is pre-written with 51 types of test conditions for general electrical equipment, which conform to IEC 60990 and the standards listed below. You can set the standard test conditions merely by calling them.

[Standards covered by the memory]		
Standard No. Applicable electrical equipment		
IEC60950	Information technology equipment	
IEC60335	Household and similar electrical appliances	
IEC60065	Audio, video and similar electronic apparatus	
IEC60745	Hand-held motor-operated electric tools	
IEC60598	Luminaires	
IEC61010	Electrical equipment for measurement, control, and laboratory use	
Electrical Appliance and Material Safety Law	Electrical appliances	
IEC61029	Transportable motor-operated electric tools	

Lets you manage the calibration time limit

For independent tests, enables you to save not only test results but also the test date and time and the test conditions for up to 50 tests; for auto tests, you can save this data for up to 50 programs. You can also save the test results as external records using the USB and other interfaces.

USB interface provided as standard

In addition to the SIGNAL I/O, GPIB, and RS232C interfaces, a USB interface is also provided as standard.

Range of other functions

- "MAX function," which retains the largest current measured.
- "CONV function," which converts the measured current value into the corresponding value for the preset power voltage.
- "SELV function," which causes the DANGER lamp to turn ON if a preset safety extra low voltage (SELV) is exceeded in meter measurement mode.
- "CHECK function," which performs self-analysis of the measurement circuit networks.

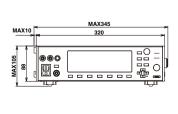
Leakage Current Tester

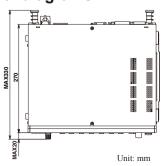
	nt item		3 types, namely, touch current (TC) measurement,	
	I		protective conductor current (PCC) measurement, and METE	
Measure- ment	nent		Measure the voltage drop across the reference resistor, using a me surement circuit network (NTWK), and then calculate the current.	
PCC			Measure the voltage drop across the reference resistor connecte to the protective earth wire, and then calculate the current.	
METER			Measure the voltage and current using the measurement terminal	
Measuremen	nt mode		DC/RMS/PEAK (RMS being the true root-mean-square value	
Measure- ment	Network A (IEC 60990 compliant)		Basic measurement element: $(1.5 \text{ k}\Omega \text{ // } 0.22 \mu\text{F}) + 500 \Omega$	
network (NTWK)	Network B/B1 (IEC 60990 compliant)		Basic measurement element: $(1.5 \text{ k}\Omega // 0.22 \text{ \muF}) + 500 \Omega // (10 \text{ k}\Omega + 22 \text{ nF})$	
	Network C (IEC 60990 compliant)		Basic measurement element: $(1.5 \text{ k}\Omega \text{ // } 0.22 \text{ µF}) + 500 \Omega \text{ // } (10 \text{ k}\Omega + (20 \text{ k}\Omega + 6.2 \text{ nF}) \text{ // } 9.1 \text{ nF})$	
	Network D		Basic measurement element: $1 \text{ k}\Omega$	
	Network E		Basic measurement element: $1 \text{ k}\Omega//(10 \text{ k}\Omega + 11.225 \text{ nF} + 579 \text{ G}$	
	Network F		Basic measurement element: 1.5 kΩ//0.15 μF	
	Network G		Basic measurement element: 2 kΩ	
	stant tolerance	:	Resistance: ±0.1%, capacitor 0.15 μF: ±2%, other: ±1%	
Current mea	surement section	on	Training as the cost to provide the cost to the	
Measure-	Range 1 Range 2		DC/RMS: 30 μA to 600 μA, PEAK: 50 μA to 850 μA *1 DC/RMS: 125 μA to 6.00 mA, PEAK: 175 μA to 8.50 mA *1	
ment range	Range 3		DC/RMS: 1.25 mA to 3.00 mA, PEAK: 1.75 mA to 9.00 mA	
Range switch	_		AUTO/FIX	
Measuremen	nt current (i)		i < 1mA: □□□ μA/1 μA, 1 mA ≤ i < 10 mA:□.□□ mA/0.01 m	
display/resol	1	DC	10 mA ≤ i < 100 mA: □□.□ mA/0.1 mA	
Measure- ment	Range 1	DC RMS	±(5.0% of rdng + 20 μA)	
accuracy *2		KWIS	15 Hz ≤ f ≤ 10 kHz: \pm (2.0% of rdng + 8 μA) 10 kHz < f ≤ 1 MHz: \pm (5.0% of rdng + 10 μA)	
		PEAK	15 Hz \leq f \leq 1 kHz: \pm (5.0% of rdng + 10 μ A)	
			$1 \text{ kHz} < f \le 10 \text{ kHz}$: $\pm (5.0\% \text{ of rdng} + 10 \mu\text{A})$	
	Range 2	DC	±(5.0% of rdng + 50 μA)	
		RMS	15 Hz \leq f \leq 10 kHz: \pm (2.0% of rdng + 20 μ A)	
			$10 \text{ kHz} < f \le 1 \text{ MHz}$: $\pm (5.0\% \text{ of rdng} + 20 \mu\text{A})$	
		PEAK	15 Hz ≤ f ≤ 1 kHz: \pm (2.0% of rdng + 50 μA)	
		D.C.	$1 \text{ kHz} < f \le 10 \text{ kHz} : \pm (5.0\% \text{ of rdng} + 50 \mu\text{A})$	
	Range 3	DC RMS	$\pm (5.0\% \text{ of } rdng + 0.5 \text{ mA})$ 15 Hz $\leq f \leq 10 \text{ kHz}$: $\pm (2.0\% \text{ of } rdng + 0.2 \text{ mA})$	
		KWIS	$10 \text{ kHz} \le f \le 1 \text{ MHz}$: $\pm (5.0\% \text{ of rdng} + 0.2 \text{ mA})$	
		PEAK	$15 \text{ Hz} \le \text{f} \le 1 \text{ kHz}$: $\pm (2.0\% \text{ of rdng} + 0.5 \text{ mA})$	
			$1 \text{ kHz} < f \le 10 \text{ kHz}$: $\pm (5.0\% \text{ of rdng} + 0.5 \text{ mA})$	
Input resista	nce, input capa	citance	1 MΩ ±1%, < 200 pF	
	de rejection ra	tio	≤ 10 kHz: 60 dB or more. 10 kHz to 1 MHz: 40 dB or more	
Judgement fi			D/6:11:d	
Judgement n	ietnod		Pass/fail judgement by setting upper and lower current limits window comparator mode	
Judgement			U-FAIL for currents above the upper limit; L-FAIL for currer below the lower limit.	
Display, etc.			U-FAIL/L-FAIL/PASS display, buzzer sounding	
PASS hold			The time for which a PASS judgement is retained can be set to	
Setting	Range 1		0.2 s to 10.0 s or to HOLD DC/RMS: 30 μA to 600 μA, PEAK: 50 μA to 850 μA *3	
range	Range 2		DC/RMS: 151 μA to 6.00 mA, PEAK: 213 μA to 8.50 mA *3	
	Range 3		DC/RMS: 1.51 mA to 30.0 mA, PEAK: 2.13 mA to 90.0 mA	
Judgement a	ccuracy		Conforms to the measurement accuracy.	
Measuremen	nt of voltage be	tween A and I	Read rdng as UPPER setting in the measurement accuracy.	
Measuremen			DC/RMS: 10.00 V to 300.0 V, PEAK: 15.00 V to 430.0 V	
Accuracy			±(3% of rdng + 2 V), measurement range fixed at AUTO	
Input impeda			Αρρτοχ. 40 ΜΩ	
SELV detection			Set the SELV to detect; if this value is exceeded, the DANGEF lamp is turned ON	
SELV setting			10 V to 99 V, in 1-V steps, OFF function provided	
Timer, test execution function, memory Timer Test wait time			Setting range: 0 s to 999 s, accuracy: ±(100 ppm of set + 20 m	
1111101	Test time Test time		Setting range: 0 s to 999 s, accuracy. ±(100 ppm of set + 20 m	
			accuracy: ±(100 ppm of set + 20 ms)	
Test function			Auto test (AUTO): Automatic execution of up to 100 steps (test conditions)	
			Independent test (MANUAL): Independent execution of TC, PCC, or METER measurement	
Memory	Test condition	1S	AUTO: Up to 100 sequence programs can be saved (up to 500 ste in total). MANUAL: Up to 100 sequence programs can be saved.	
Test results			The user can select whether to save the judgement results whe they are output at the end of the tests. AUTO: Test results for up to 50 programs can be recorded.	

- The maximum range is indicated. The range differs depending on the measurement circuit network.

 Current converted value in Network A,B,C and PCC measurement,based on built-in voltmeter accuracy.

 The maximum range is indicated. The range differs depending on the measurement circuit network. Also, the UPPER setting in each range when the FIX range is selected is indicated.


 The maximum range is indicated. The range differs depending on the measurement circuit network. It is a Class I equipment. Be sure to ground this product's protective conductor terminal. The safety of this product is only guaranteed when the product is properly grounded.


 Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

alue conversion (CONV)	Converts the measured current value into the corresponding	
	value at the preset power voltage	
	Setting range: 80.0 V to 300.0 V, OFF function provided	
MODE	Selects a measured value from those below	
	NORM: Displays the measured value in the measurement period	
	MAX: Displays the largest measured value in the measurement period	
ive/negative phase selection	NORM: Positive phase connection, REVS: Negative phase connection	
selection (COND)	NORM: Normal, FLTNEU: Disconnection of the neutral wire, FLTPE: Disconnection of the protective earth wire	
	Generates CONTACTFAIL if the enclosure is grounded in a TO (EncLiv, EncNeu) test	
CHECK	Checks the measurement function between measurement terminals A and B, and places the tester in the PROTECTION state if an error is detected	
surement(EUT)	Measurement range: 80.0 V to 250.0 V, resolution: 0.1 V, accuracy: ±(3% of rdng + 1 V)	
surement(EUT)	Measurement range: 0.1 A to 15.00 A, resolution: 0.01 A, accuracy: ±(5% of rdng + 30 mA)	
urement (effective power)	Measurement range: 10 W to 1500 W	
	Accuracy (at a power voltage of 80 V or higher and a load power factor of 1): \pm (5% of rdng + 8 W)	
Recording	Items: Calibration date and time, test date and time, permissible date and time: Up to 2099	
Calibration time limit management(CAL	Enables the setting of a calibration time limit. Once this time has passed, a warning is output at power on	
PROTECT)	ON: Places the tester in the PROTECTION state (disables the use of the tester), OFF: Displays warning.	
peration	Relay operation error, overload, over range, measurement function check, failure of internal battery, etc.	
	D-Sub 9-pin connector (conforming to EIA-232D), baud rate: 9600/19200/38400 bps (For connection to a PC, use a "9-pin female-female reverse" cable.)	
	Conforms to IEEE Std. 488-1978. (SH1,AH1,T6,TE0,L4,LE0,SR1,PP0,DC1,DT0,C0,E1)	
	USB Specification2.0	
	6-pin MINIDIN connector (for HP21-TOS (separately sold option) only)	
)	25-pin D-Sub connector	
Patad voltage/ourrant	Torminals A to P: 250 V torminal to chassis: 250 V 100 m A	
	Terminals A to B: 250 V, terminal to chassis: 250 V, 100 mA CAT II	
	Displays the active terminals for the measurement using LED lamps	
Spec assured range	Temperature: 5 °C to 35 °C (+41 °F to +95 °F), Humidity: 20% rh to 80% rh (no condensation)	
Operating range	Temperature: 0 °C to 40 °C (+32°F to +104 °F), Humidity: 20% rh to 80% rh (no condensation)	
Storage range	Temperature: -20 °C to 70 °C (-4 °F to +158 °F), Humidity: 90% rh or less (no condensation)	
Installation location	Indoors, altitude of 2000 m or less	
Input power	Nominal input rating:100Vac to 240Vac, 50/60Hz, power consumption: 70 VA max.	
for EUT	Nominal input rating:100Vac to 240Vac, 50/60Hz	
	Rated output capacity: 1500 VA, maximum current: 15 A, rush current: 70 A peak max. (within 20 ms)	
esistance	$30~M\Omega$ or greater (500 Vdc) (between AC line and chassis, between measurement terminal and chassis)	
oltage	1390 Vac, 2 seconds/20 mA or less (between AC line and chassis	
d	25 Aac/0.1 Ω or less	
	Complies with the requirements of the following standard. IEC 61010-1 (Class I *5 , Pollution degree 2 *6)	
ensions, weight	$320[12.60 \; inch] \; (345[13.58 \; inch]) \; W \times 88[3.46 \; inch] \; (105[4.13 \; inch]) \; H \times 270[10.63 \; inch] \; (335[13.19 \; inch]) \; D \; \; mm, \\ approx. \; 5 \; kg(approx. \; 11.02 \; lbs)$	
	Test lead (TL21-TOS): 1 set (red and black with alligator clip), Flat probe (FP01-TOS): 1 set, Spare fuse: 1 pc., CD-ROM: 1 pc., Quick Reference (English: 1pc., Japanese: 1pc.), Setup guide: 1 pc., Safety information: 1 pc., Circuit principle diagram label: 1 pc., Power cord: 2 pcs.	
	Rated voltage/current Measurement category Active terminal display Spec assured range Operating range Installation location Input power for EUT essistance oltage d	

- The warm-up time must be 30 minutes or longer.
 dended denotes a reading, set denotes the set value, and EUT is the electrical equipment under test.

External dimensional diagrams

High-Voltage Digital Voltmeter

■149-10A

- Measurement of high voltages (AC/DC) of up to 10 kV maximum.
- Large 4 1/2 digit LED display
- High measuring accuracy and input resistance
- Light weight of only 3 kg
- Compact design
- Excellent ease of maintenance

C:C4:		
Specifications		
Operating System	Double integration system (sampling cycle: 3 times/sec)	
DC Voltage	Measuring range: 0.500 kV to 10,000 kV Accuracy: $\pm (0.5\% \text{ of reading} \pm 0.03\% \text{ of range})$ Input resistance: $1000 \text{ M}\Omega \pm 2\%$	
AC Voltage	Measuring range: $0.500~kV$ to $10,000~kV$ Accuracy: $\pm (1~\%$ of reading $\pm 0.05~\%$ of range) Frequency characteristics: $50/60~Hz$ (sine wave rms value display of mean value response) Input resistance: $1000~M\Omega \pm 2\%$	
Power Requirements	100V±10%, approx. 10 VA	
Dimensions (MAX)	134[5.27 inch]W × 164[6.46 inch]H × 270[10.63 inch]D mm (140[5.51 inch]W × 189[7.44 inch]H × 350[13.78 inch]D mm)	
Weight	approx. 3 kg (approx. 6.61 lbs)	
Accessories	TL05-TOS high-voltage test lead: 1 HTL-2.5DH high-voltage coaxial cable: 1	

UL Resistance Load

■RL01-TOS

This device is described in section 125, paragraph 2-1B1 of UL1492. The RL01-TOS is a variable load resistor for checking the output voltage of hipot testers used in dielectric strength testing on production lines. (Complies with UL regulations including UL1270, UL1409 and UL1410.)

Specifications		
Resistors	120, 159, 210, 279, 369, 489, 648, 858, 1,137, 1,500, 1,989 and 2,148 kΩ	
Resistance Accuracy	+1 %, -0 % of nominal value when set to 120 k Ω , ±1 % of nominal value when set to other values	
Maximum Operating Voltage	1300 V (continuous rating)	
Maximum Overload Voltage	1400 V for 5 seconds (application may not be repeated within 1 minute)	
Dimensions (MAX)	200[7.87 inch]W × 100[3.94 inch]H × 260[10.24 inch]D mm (210[8.27 inch]W × 120[4.72 inch]H × 295[11.61 inch]D mm)	
Weight	approx. 2.6 kg(approx. 5.73 lbs)	
Accessories	TL04-TOS high-voltage test lead: 2 TL05-TOS high-voltage test lead: 1	

Calibration Resistor for Insulation Resistance Tester

■929-1M ■929-10M ■929-100M

The 929 Series Standard Resistors are for calibration of Insulation Testers.

Specifications			
Model	929-1M	929-10M	929-100M
Nominal resistance	1 ΜΩ	10 MΩ	100 MΩ
Accuracy of resistance	1 % at 25°C ±10 °C		
Temperature coefficient	100 ppm/°C or better		
Voltage coefficient	1 ppm/V or better		
Working voltage rating	1.2 kV		
Dimensions (MAX)	64[25.20 inch]W × 24[9.45 inch]H × 30[11.81 inch]D mm		

^{*} The 929 series standard resistors can not be installed directly to the TOS series. Please use the test lead for connection.

Rack Mount Bracket

Due de et Messe	JIS Standard	EIA Standard
Product Name	Bracket Model No.	Bracket Model No.
TOS9300	KRB150-TOS	KRB3-TOS
TOS9301	KRB150-TOS	KRB3-TOS
TOS9301PD	KRB150-TOS	KRB3-TOS
TOS9302	KRB150-TOS	KRB3-TOS
TOS9303	KRB150-TOS	KRB3-TOS
TOS9303LC	KRB150-TOS	KRB3-TOS
TOS9320	KRB100-TOS	KRB2-TOS
TOS5302	KRA200-TOS	KRA4-TOS
TOS5301	KRA200-TOS	KRA4-TOS
TOS5300	KRA200-TOS	KRA4-TOS
TOS5200	KRA200-TOS	KRA4-TOS
TOS6200A	KRB100-TOS	KRB2-TOS
TOS6210	KRB100-TOS	KRB2-TOS
TOS3200	KRB150-TOS	KRB3-TOS

Option

Test Lead

■TL01-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV]

■TL02-TOS

[cable length: 3 m/max. operating voltage: 5 kV]

■TL03-TOS

[cable length: 1.5 m/max. operating voltage: 10 kV]

■TL04-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for TOS1200, RL01-TOS)]

■TL05-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for 149-10A, RL01-TOS)]

■TL06-TOS

[cable length: $0.5\ m/max$. operating voltage: $5\ kV$ (for parallel connection of TOS9220/9221)]

■TL07-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for TOS9220/9221)]

■TL08-TOS

[cable length: 1.5 m/max. operating voltage: 1 kV (for TOS7200)]

■TL11-TOS

[cable length: 1.5 m/max. operating current: 30 A (for TOS6200A)]

■TL12-TOS

[cable length: 1.5 m/max. operating current: 60 A (for TOS6210)]

■TL13-TOS

[cable length: 1.6 m/max. operating current: 40 A (for TOS9302, 9303, 9303LC)]

■TL21-TOS

[cable length: 1.5 m (for TOS3200)]

■TL22-TOS

[cable length: 1.7 m/max. rated voltage: 1000 V /max. rated current: 10 A (for TOS9303LC)]

■TL31-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for TOS5300 Series)]

■TL32-TOS

[cable length: 3 m/max. operating voltage: 5 kV (for TOS5300 Series)]

■TL33-TOS

[cable length: $0.5\ m/max$. operating voltage: $5\ kV$ (for TOS9320)]

■HTL-2.5DH

[cable length: 1.5 m/max. operating voltage: 10 kV (for 149-10A)]

Test Probe

■HP01A-TOS*

[cable length: 1.8 m/max. operating voltage: 4 kV AC(RMS), 5kV DC]

■HP02A-TOS*

[cable length: 3.5 m/max. operating voltage: 4 kV AC(RMS), 5kV DC]

* The optional Adaptor DD-5P/9P is required for the connection.

■HP11-TOS

[cable length:1.8 m/max.operating voltage:1 kV DC/max.operating current:100 mA]

■HP21-TOS

[cable length:1.8 m/max.operating voltage:250 Vrms/max.operating current:100 mA]

■LP01-TOS

[cable length: 2 m/max. operating current: 30 A]

■LP02-TOS

[cable length: 2 m/max. operating current: 60 A]

■FP01-TOS

(flat probe for TOS3200, TOS9303LC)

Option

Remote Control Box

■RC01-TOS*

[one-hand operation/dimensions: 200W×70H×39D mm] Accessory cable length: 1.5 m $\,$

■RC02-TOS*

[both-hands operation/dimensions: 330W×70H×39D mm] Accessory cable length: 1.5 m

* The optional Adaptor DD-5P/6P is required for the connection.

Warning Light Unit

■PL01-TOS (for 100 V AC)

■PL02A-TOS (for 24 V DC)

DIN Cable

■DD-3 5P

[cable length: 3 m/DIN plug to DIN plug]

Conversion Cable

■DD-5P/6P

[Adapter / DIN to Mini DIN]

■DD-5P/9P

[Adapter /DIN to Mini DIN]

The DD-5P/9P DIN adapter cable (5 pin to 9 pin) is for connecting the following option products to the TOS9300/TOS5300/TOS5200 series.

- Remote control box(RC01-TOS/RC02-TOS)
- High voltage test probe(HP01A-TOS/HP02A-TOS)
- Test probe for touch current test(HP21-TOS)

Multi Outlet

■OT01-TOS (multi outlet for TOS3200)

Terminal Unit

■TU01-TOS

(for TOS5300/TOS5200 Series)

This is a terminal unit for converting a 25-pin SIGNAL I/O connector of TOS5300/5301/5302/5200 to a 14-pin SIGNAL I/O connector of TOS5050A/5051A.

By connecting via this product, the external control performed with TOS5050A/5051A can be performed with TOS5300/5301/5302/5200 at the same time.

Option

Cross Reference of options for Electrical Safety Testers

Model	Remote Control		Warning Light Unit, Terminal Unit			Test Probe							Test Lead													
	RC01/ 02-TOS	DD- 3 5P	PL01- TOS	PL02A- TOS	TU01- TOS	HP01A/ 02A-TOS	HP11- TOS	HP21- TOS	LP01- TOS	LP02- TOS	FP01- TOS	TL01/02/ 03-TOS	TL04- TOS	TL05- TOS	TL06- TOS	TL07- TOS	TL08- TOS	TL11/ 12-TOS	TL13- TOS	TL21- TOS	TL22- TOS	TL31/ 32-TOS	TL33- TOS	TL51- TOS	HTL2.5- DH	
TOS9300	0			0		0																0	0			
TOS9301	0			0		0																0	0			
TOS9301PD	0			0		0																0	0			
TOS9302	0			0		0													0			0	0			
TOS9303	0			0		0													0			0	0			
TOS9303LC	0			0		0		0			0								0		0	0	0			
TOS9320																0						0	0			
TOS9213AS	0	0		0		0						0	0		0											
TOS5101	0	0	0									0														
TOS5302	0			0	0	0																0				
TOS5301	0			0	0	0																0				
TOS5300	0			0	0	0																0				
TOS5200	0			0	0	0																0				
TOS6200A	0	0							0	0								0								
TOS6210	0	0							0	0								0								
TOS7200	0	0					0										0									
TOS7210S	0	0																						0		
TOS3200								0			0									0						
149-10A														0											0	
RL01-TOS													0	0	0											

[:] Required the converting adapter "DD-5p/6p" : Allows to use within the cable rating : Required the converting adapter "DD-5p/9p"

KIKUSUI ELECTRONICS CORPORATION

1-1-3, Higashiyamata, Tsuzuki-ku, Yokohama, Kanagawa, 224-0023, Japan Phone:(+81)45-593-0200, Facsimile:(+81)45-593-7591, https://global.kikusui.co.jp/

KIKUSUI AMERICA, INC. 1-310-214-0000 www.kikusuiamerica.com

3625 Del Amo Blvd., Suite 160 Torrance, CA90503 Phone: 310-214-0000, Facsimile: 310-214-0014

KIKUSUI TRADING (SHANGHAI) Co., Ltd. | www.kikusui.cn

Room 305, Shenggao Building, No.137, Xianxia Road, Shanghai City, China Phone: 021-5887-9067, Facsimile: 021-5887-9069

KIKUSUI ELECTRONICS EUROPE GmbH

Grossenbaumer Weg 8, 40472 Duesseldorf, Germany Phone: +49(211)54257600, E-mail: support@kikusui-europe.com

For our local sales distributors and representatives, please refer to "sales network" of our website.

Distributor:

■ All products contained in this catalogue are equipment and devices that are premised on use under the supervision of qualified personnel, and are not designed or produced for home-use or use by general consumers.

■ Specifications, design and so forth are subject to change without prior notice to improve the quality. ■ Product names and prices are subject to change and production may be discontinued when necessar. ■ Product names, company names and brand names contained in this catalogue represent the respective registered trade name or trade mark. ■ Colors, textures and so forth of photographs shown in this catalogue may differ from actual products due to a limited fidelity in printing. ■ Although every effort has been made to provide the information as accurate as possible for this catalogue, certain details have unavoidably been omitted due to limitations in space. ■ If you find any miscripts or errors in this catalogue, if would be appreciated if you would inform us. ■ Please contact our. find any misprints or errors in this catalogue, it would be appreciated if you would inform us.

Elease contact our distributors to confirm specifications, price, accessories or anything that may be unclear when placing an order or concluding a purchasing agreement.

Printed in Japan Issue:Apr.2025 202504PDFEC171